Documentation

Mathlib.Analysis.SpecialFunctions.ImproperIntegrals

Evaluation of specific improper integrals #

This file contains some integrability results, and evaluations of integrals, over โ„ or over half-infinite intervals in โ„.

These lemmas are stated in terms of either Iic or Ioi (neglecting Iio and Ici) to match mathlib's conventions for integrals over finite intervals (see intervalIntegral).

See also #

theorem integral_exp_mul_complex_Ioi {a : โ„‚} (ha : a.re < 0) (c : โ„) :
โˆซ (x : โ„) in Set.Ioi c, Complex.exp (a * โ†‘x) = -Complex.exp (a * โ†‘c) / a
theorem integral_exp_mul_complex_Iic {a : โ„‚} (ha : 0 < a.re) (c : โ„) :
โˆซ (x : โ„) in Set.Iic c, Complex.exp (a * โ†‘x) = Complex.exp (a * โ†‘c) / a
theorem integrableOn_add_rpow_Ioi_of_lt {a c m : โ„} (ha : a < -1) (hc : -m < c) :

If -m < c, then (fun t : โ„ โ†ฆ (t + m) ^ a) is integrable on (c, โˆž) for all a < -1.

theorem integrableOn_Ioi_rpow_of_lt {a c : โ„} (ha : a < -1) (hc : 0 < c) :

If 0 < c, then (fun t : โ„ โ†ฆ t ^ a) is integrable on (c, โˆž) for all a < -1.

The real power function with any exponent is not integrable on (0, +โˆž).

theorem integral_Ioi_rpow_of_lt {a : โ„} (ha : a < -1) {c : โ„} (hc : 0 < c) :
โˆซ (t : โ„) in Set.Ioi c, t ^ a = -c ^ (a + 1) / (a + 1)

The complex power function with any exponent is not integrable on (0, +โˆž).

theorem integral_Ioi_cpow_of_lt {a : โ„‚} (ha : a.re < -1) {c : โ„} (hc : 0 < c) :
โˆซ (t : โ„) in Set.Ioi c, โ†‘t ^ a = -โ†‘c ^ (a + 1) / (a + 1)