Serre classes #
For any abelian category C, we introduce a type class IsSerreClass C for
Serre classes in C (also known as "Serre subcategories"). A Serre class is
a property P : ObjectProperty C of objects in C which holds for a zero object,
and is closed under subobjects, quotients and extensions.
Future work #
- Show that the localization of
Cwith respect to a Serre class is an abelian category.
References #
- [Jean-Pierre Serre, Groupes d'homotopie et classes de groupes abΓ©liens][serre1958]
class
CategoryTheory.ObjectProperty.IsSerreClass
{C : Type u}
[Category.{v, u} C]
[Abelian C]
(P : ObjectProperty C)
extends P.ContainsZero, P.IsClosedUnderSubobjects, P.IsClosedUnderQuotients, P.IsClosedUnderExtensions :
A Serre class in an abelian category consists of a predicate which holds for the zero object and is closed under subobjects, quotients, extensions.
- exists_zero : β (Z : C), Limits.IsZero Z β§ P Z
- prop_Xβ_of_shortExact {S : ShortComplex C} (hS : S.ShortExact) (hβ : P S.Xβ) (hβ : P S.Xβ) : P S.Xβ
Instances
instance
CategoryTheory.ObjectProperty.instIsSerreClassTop
{C : Type u}
[Category.{v, u} C]
[Abelian C]
:
instance
CategoryTheory.ObjectProperty.instIsSerreClassIsZero
{C : Type u}
[Category.{v, u} C]
[Abelian C]
:
theorem
CategoryTheory.ObjectProperty.prop_iff_of_shortExact
{C : Type u}
[Category.{v, u} C]
[Abelian C]
(P : ObjectProperty C)
[P.IsSerreClass]
{S : ShortComplex C}
(hS : S.ShortExact)
:
theorem
CategoryTheory.ObjectProperty.prop_Xβ_of_exact
{C : Type u}
[Category.{v, u} C]
[Abelian C]
(P : ObjectProperty C)
[P.IsSerreClass]
{S : ShortComplex C}
(hS : S.Exact)
(hβ : P S.Xβ)
(hβ : P S.Xβ)
:
P S.Xβ
instance
CategoryTheory.ObjectProperty.instIsSerreClassInverseImageOfPreservesFiniteLimitsOfPreservesFiniteColimits
{C : Type u}
[Category.{v, u} C]
[Abelian C]
(P : ObjectProperty C)
{D : Type u'}
[Category.{v', u'} D]
[Abelian D]
[P.IsSerreClass]
(F : Functor D C)
[Limits.PreservesFiniteLimits F]
[Limits.PreservesFiniteColimits F]
:
(P.inverseImage F).IsSerreClass