Documentation

Mathlib.CategoryTheory.Center.Basic

The center of a category #

Given a category C, we introduce an abbreviation CatCenter C for the center of the category C, which is End (๐Ÿญ C), the type of endomorphisms of the identity functor of C.

References #

@[reducible, inline]
abbrev CategoryTheory.CatCenter (C : Type u) [Category.{v, u} C] :
Type (max u v)

The center of a category C is the type End (๐Ÿญ C) of the endomorphisms of the identify functor of C.

Equations
    Instances For
      @[reducible, inline]
      abbrev CategoryTheory.CatCenter.app {C : Type u} [Category.{v, u} C] (x : CatCenter C) (X : C) :

      The action of the center of a category on an object. (This is necessary as NatTrans.app x X is syntactically an endomorphism of (๐Ÿญ C).obj X rather than of X.)

      Equations
        Instances For
          theorem CategoryTheory.CatCenter.ext {C : Type u} [Category.{v, u} C] (x y : CatCenter C) (h : โˆ€ (X : C), x.app X = y.app X) :
          x = y
          theorem CategoryTheory.CatCenter.ext_iff {C : Type u} [Category.{v, u} C] {x y : CatCenter C} :
          x = y โ†” โˆ€ (X : C), x.app X = y.app X