The center of a category #
Given a category C, we introduce an abbreviation CatCenter C for
the center of the category C, which is End (๐ญ C), the
type of endomorphisms of the identity functor of C.
References #
- https://ncatlab.org/nlab/show/center+of+a+category
@[reducible, inline]
The center of a category C is the type End (๐ญ C) of the endomorphisms
of the identify functor of C.
Equations
Instances For
@[reducible, inline]
The action of the center of a category on an object. (This is necessary as
NatTrans.app x X is syntactically an endomorphism of (๐ญ C).obj X
rather than of X.)
Equations
Instances For
theorem
CategoryTheory.CatCenter.ext
{C : Type u}
[Category.{v, u} C]
(x y : CatCenter C)
(h : โ (X : C), x.app X = y.app X)
:
theorem
CategoryTheory.CatCenter.naturality
{C : Type u}
[Category.{v, u} C]
(z : CatCenter C)
{X Y : C}
(f : X โถ Y)
:
theorem
CategoryTheory.CatCenter.naturality_assoc
{C : Type u}
[Category.{v, u} C]
(z : CatCenter C)
{X Y : C}
(f : X โถ Y)
{Z : C}
(h : Y โถ Z)
:
CategoryStruct.comp f (CategoryStruct.comp (z.app Y) h) = CategoryStruct.comp (z.app X) (CategoryStruct.comp f h)
theorem
CategoryTheory.CatCenter.mul_app'
{C : Type u}
[Category.{v, u} C]
(x y : CatCenter C)
(X : C)
:
theorem
CategoryTheory.CatCenter.mul_app'_assoc
{C : Type u}
[Category.{v, u} C]
(x y : CatCenter C)
(X : C)
{Z : C}
(h : X โถ Z)
:
CategoryStruct.comp ((x * y).app X) h = CategoryStruct.comp (y.app X) (CategoryStruct.comp (x.app X) h)
theorem
CategoryTheory.CatCenter.mul_app
{C : Type u}
[Category.{v, u} C]
(x y : CatCenter C)
(X : C)
:
theorem
CategoryTheory.CatCenter.mul_app_assoc
{C : Type u}
[Category.{v, u} C]
(x y : CatCenter C)
(X : C)
{Z : C}
(h : X โถ Z)
:
CategoryStruct.comp ((x * y).app X) h = CategoryStruct.comp (x.app X) (CategoryStruct.comp (y.app X) h)
Equations
theorem
CategoryTheory.CatCenter.smul_eq
{C : Type u}
[Category.{v, u} C]
(z : CatCenter C)
{X Y : C}
(f : X โถ Y)
:
theorem
CategoryTheory.CatCenter.smul_eq'
{C : Type u}
[Category.{v, u} C]
(z : CatCenter C)
{X Y : C}
(f : X โถ Y)
:
Equations
theorem
CategoryTheory.CatCenter.smul_iso_hom_eq
{C : Type u}
[Category.{v, u} C]
(z : (CatCenter C)หฃ)
{X Y : C}
(f : X โ
Y)
:
theorem
CategoryTheory.CatCenter.smul_iso_hom_eq_assoc
{C : Type u}
[Category.{v, u} C]
(z : (CatCenter C)หฃ)
{X Y : C}
(f : X โ
Y)
{Z : C}
(h : Y โถ Z)
:
CategoryStruct.comp (z โข f).hom h = CategoryStruct.comp f.hom (CategoryStruct.comp ((โz).app Y) h)
theorem
CategoryTheory.CatCenter.smul_iso_hom_eq'
{C : Type u}
[Category.{v, u} C]
(z : (CatCenter C)หฃ)
{X Y : C}
(f : X โ
Y)
:
theorem
CategoryTheory.CatCenter.smul_iso_hom_eq'_assoc
{C : Type u}
[Category.{v, u} C]
(z : (CatCenter C)หฃ)
{X Y : C}
(f : X โ
Y)
{Z : C}
(h : Y โถ Z)
:
CategoryStruct.comp (z โข f).hom h = CategoryStruct.comp ((โz).app X) (CategoryStruct.comp f.hom h)
theorem
CategoryTheory.CatCenter.smul_iso_inv_eq
{C : Type u}
[Category.{v, u} C]
(z : (CatCenter C)หฃ)
{X Y : C}
(f : X โ
Y)
:
theorem
CategoryTheory.CatCenter.smul_iso_inv_eq_assoc
{C : Type u}
[Category.{v, u} C]
(z : (CatCenter C)หฃ)
{X Y : C}
(f : X โ
Y)
{Z : C}
(h : X โถ Z)
:
CategoryStruct.comp (z โข f).inv h = CategoryStruct.comp f.inv (CategoryStruct.comp ((โzโปยน).app X) h)
theorem
CategoryTheory.CatCenter.smul_iso_inv_eq'
{C : Type u}
[Category.{v, u} C]
(z : (CatCenter C)หฃ)
{X Y : C}
(f : X โ
Y)
:
theorem
CategoryTheory.CatCenter.smul_iso_inv_eq'_assoc
{C : Type u}
[Category.{v, u} C]
(z : (CatCenter C)หฃ)
{X Y : C}
(f : X โ
Y)
{Z : C}
(h : X โถ Z)
:
CategoryStruct.comp (z โข f).inv h = CategoryStruct.comp ((โzโปยน).app Y) (CategoryStruct.comp f.inv h)