Documentation

Mathlib.Combinatorics.SetFamily.Shatter

Shattering families #

This file defines the shattering property and VC-dimension of set families.

Main declarations #

TODO #

def Finset.Shatters {α : Type u_1} [DecidableEq α] (𝒜 : Finset (Finset α)) (s : Finset α) :

A set family 𝒜 shatters a set s if all subsets of s can be obtained as the intersection of s and some element of the set family, and we denote this 𝒜.Shatters s. We also say that s is traced by 𝒜.

Equations
    Instances For
      theorem Finset.Shatters.exists_inter_eq_singleton {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} {a : α} (hs : 𝒜.Shatters s) (ha : a s) :
      t𝒜, s t = {a}
      theorem Finset.Shatters.mono_left {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} (h : 𝒜 ) (h𝒜 : 𝒜.Shatters s) :
      .Shatters s
      theorem Finset.Shatters.mono_right {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s t : Finset α} (h : t s) (hs : 𝒜.Shatters s) :
      𝒜.Shatters t
      theorem Finset.Shatters.exists_superset {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} (h : 𝒜.Shatters s) :
      t𝒜, s t
      theorem Finset.shatters_of_forall_subset {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} (h : ts, t 𝒜) :
      𝒜.Shatters s
      theorem Finset.Shatters.nonempty {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} (h : 𝒜.Shatters s) :
      @[simp]
      theorem Finset.shatters_empty {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} :
      theorem Finset.Shatters.subset_iff {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s t : Finset α} (h : 𝒜.Shatters s) :
      t s u𝒜, s u = t
      theorem Finset.shatters_iff {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} :
      𝒜.Shatters s image (fun (t : Finset α) => s t) 𝒜 = s.powerset
      @[simp]
      theorem Finset.shatters_univ {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} [Fintype α] :
      𝒜.Shatters univ 𝒜 = univ
      def Finset.shatterer {α : Type u_1} [DecidableEq α] (𝒜 : Finset (Finset α)) :

      The set family of sets that are shattered by 𝒜.

      Equations
        Instances For
          @[simp]
          theorem Finset.mem_shatterer {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} :
          s 𝒜.shatterer 𝒜.Shatters s
          theorem Finset.shatterer_mono {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} (h : 𝒜 ) :
          theorem Finset.subset_shatterer {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} (h : IsLowerSet 𝒜) :
          𝒜 𝒜.shatterer
          @[simp]
          theorem Finset.isLowerSet_shatterer {α : Type u_1} [DecidableEq α] (𝒜 : Finset (Finset α)) :
          @[simp]
          theorem Finset.shatterer_eq {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} :
          𝒜.shatterer = 𝒜 IsLowerSet 𝒜
          @[simp]
          theorem Finset.shatterer_idem {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} :
          @[simp]
          theorem Finset.shatters_shatterer {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} :
          theorem Finset.Shatters.shatterer {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} :
          𝒜.Shatters s𝒜.shatterer.Shatters s

          Alias of the reverse direction of Finset.shatters_shatterer.

          theorem Finset.card_le_card_shatterer {α : Type u_1} [DecidableEq α] (𝒜 : Finset (Finset α)) :

          Pajor's variant of the Sauer-Shelah lemma.

          theorem Finset.Shatters.of_compression {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} {a : α} (hs : (Down.compression a 𝒜).Shatters s) :
          𝒜.Shatters s

          Vapnik-Chervonenkis dimension #

          def Finset.vcDim {α : Type u_1} [DecidableEq α] (𝒜 : Finset (Finset α)) :

          The Vapnik-Chervonenkis dimension of a set family is the maximal size of a set it shatters.

          Equations
            Instances For
              theorem Finset.vcDim_mono {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} (h𝒜ℬ : 𝒜 ) :
              𝒜.vcDim .vcDim
              theorem Finset.Shatters.card_le_vcDim {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} (hs : 𝒜.Shatters s) :
              s.card 𝒜.vcDim
              theorem Finset.vcDim_compress_le {α : Type u_1} [DecidableEq α] (a : α) (𝒜 : Finset (Finset α)) :

              Down-compressing decreases the VC-dimension.

              theorem Finset.card_shatterer_le_sum_vcDim {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} [Fintype α] :
              𝒜.shatterer.card kIic 𝒜.vcDim, (Fintype.card α).choose k

              The Sauer-Shelah lemma.