Documentation

Mathlib.Computability.ContextFreeGrammar

Context-Free Grammars #

This file contains the definition of a context-free grammar, which is a grammar that has a single nonterminal symbol on the left-hand side of each rule.

We restrict nonterminals of a context-free grammar to Type because universe polymorphism would be cumbersome and unnecessary; we can always restrict a context-free grammar to the finitely many nonterminal symbols that are referred to by its finitely many rules.

Main definitions #

Main theorems #

structure ContextFreeRule (T : Type u_1) (N : Type u_2) :
Type (max u_1 u_2)

Rule that rewrites a single nonterminal to any string (a list of symbols).

  • input : N

    Input nonterminal a.k.a. left-hand side.

  • output : List (Symbol T N)

    Output string a.k.a. right-hand side.

Instances For
    theorem ContextFreeRule.ext {T : Type u_1} {N : Type u_2} {x y : ContextFreeRule T N} (input : x.input = y.input) (output : x.output = y.output) :
    x = y
    instance instDecidableEqContextFreeRule {Tโœ : Type u_1} {Nโœ : Type u_2} [DecidableEq Tโœ] [DecidableEq Nโœ] :
    DecidableEq (ContextFreeRule Tโœ Nโœ)
    Equations
      def instDecidableEqContextFreeRule.decEq {Tโœ : Type u_1} {Nโœ : Type u_2} [DecidableEq Tโœ] [DecidableEq Nโœ] (xโœ xโœยน : ContextFreeRule Tโœ Nโœ) :
      Decidable (xโœ = xโœยน)
      Equations
        Instances For
          def instReprContextFreeRule.repr {Tโœ : Type u_1} {Nโœ : Type u_2} [Repr Tโœ] [Repr Nโœ] :
          ContextFreeRule Tโœ Nโœ โ†’ โ„• โ†’ Std.Format
          Equations
            Instances For
              instance instReprContextFreeRule {Tโœ : Type u_1} {Nโœ : Type u_2} [Repr Tโœ] [Repr Nโœ] :
              Repr (ContextFreeRule Tโœ Nโœ)
              Equations
                structure ContextFreeGrammar (T : Type u_1) :
                Type (max 1 u_1)

                Context-free grammar that generates words over the alphabet T (a type of terminals).

                Instances For
                  inductive ContextFreeRule.Rewrites {T : Type u_1} {N : Type u_2} (r : ContextFreeRule T N) :
                  List (Symbol T N) โ†’ List (Symbol T N) โ†’ Prop

                  Inductive definition of a single application of a given context-free rule r to a string u; r.Rewrites u v means that the r sends u to v (there may be multiple such strings v).

                  Instances For
                    theorem ContextFreeRule.Rewrites.exists_parts {T : Type u_1} {N : Type u_2} {r : ContextFreeRule T N} {u v : List (Symbol T N)} (hr : r.Rewrites u v) :
                    โˆƒ (p : List (Symbol T N)) (q : List (Symbol T N)), u = p ++ [Symbol.nonterminal r.input] ++ q โˆง v = p ++ r.output ++ q
                    theorem ContextFreeRule.rewrites_iff {T : Type u_1} {N : Type u_2} {r : ContextFreeRule T N} {u v : List (Symbol T N)} :
                    r.Rewrites u v โ†” โˆƒ (p : List (Symbol T N)) (q : List (Symbol T N)), u = p ++ [Symbol.nonterminal r.input] ++ q โˆง v = p ++ r.output ++ q

                    Rule r rewrites string u is to string v iff they share both a prefix p and postfix q such that the remaining middle part of u is the input of r and the remaining middle part of u is the output of r.

                    theorem ContextFreeRule.Rewrites.append_left {T : Type u_1} {N : Type u_2} {r : ContextFreeRule T N} {u v : List (Symbol T N)} (hvw : r.Rewrites u v) (p : List (Symbol T N)) :
                    r.Rewrites (p ++ u) (p ++ v)

                    Add extra prefix to context-free rewriting.

                    theorem ContextFreeRule.Rewrites.append_right {T : Type u_1} {N : Type u_2} {r : ContextFreeRule T N} {u v : List (Symbol T N)} (hvw : r.Rewrites u v) (p : List (Symbol T N)) :
                    r.Rewrites (u ++ p) (v ++ p)

                    Add extra postfix to context-free rewriting.

                    Given a context-free grammar g and strings u and v g.Produces u v means that one step of a context-free transformation by a rule from g sends u to v.

                    Equations
                      Instances For
                        @[reducible, inline]
                        abbrev ContextFreeGrammar.Derives {T : Type u_1} (g : ContextFreeGrammar T) :
                        List (Symbol T g.NT) โ†’ List (Symbol T g.NT) โ†’ Prop

                        Given a context-free grammar g and strings u and v g.Derives u v means that g can transform u to v in some number of rewriting steps.

                        Equations
                          Instances For

                            Given a context-free grammar g and a string s g.Generates s means that g can transform its initial nonterminal to s in some number of rewriting steps.

                            Equations
                              Instances For

                                The language (set of words) that can be generated by a given context-free grammar g.

                                Equations
                                  Instances For
                                    @[simp]

                                    A given word w belongs to the language generated by a given context-free grammar g iff g can derive the word w (wrapped as a string) from the initial nonterminal of g in some number of steps.

                                    theorem ContextFreeGrammar.Derives.trans {T : Type u_1} {g : ContextFreeGrammar T} {u v w : List (Symbol T g.NT)} (huv : g.Derives u v) (hvw : g.Derives v w) :
                                    g.Derives u w
                                    theorem ContextFreeGrammar.Derives.trans_produces {T : Type u_1} {g : ContextFreeGrammar T} {u v w : List (Symbol T g.NT)} (huv : g.Derives u v) (hvw : g.Produces v w) :
                                    g.Derives u w
                                    theorem ContextFreeGrammar.Produces.trans_derives {T : Type u_1} {g : ContextFreeGrammar T} {u v w : List (Symbol T g.NT)} (huv : g.Produces u v) (hvw : g.Derives v w) :
                                    g.Derives u w
                                    theorem ContextFreeGrammar.Derives.eq_or_head {T : Type u_1} {g : ContextFreeGrammar T} {u w : List (Symbol T g.NT)} (huw : g.Derives u w) :
                                    u = w โˆจ โˆƒ (v : List (Symbol T g.NT)), g.Produces u v โˆง g.Derives v w
                                    theorem ContextFreeGrammar.Derives.eq_or_tail {T : Type u_1} {g : ContextFreeGrammar T} {u w : List (Symbol T g.NT)} (huw : g.Derives u w) :
                                    w = u โˆจ โˆƒ (v : List (Symbol T g.NT)), g.Derives u v โˆง g.Produces v w
                                    theorem ContextFreeGrammar.Produces.append_left {T : Type u_1} {g : ContextFreeGrammar T} {v w : List (Symbol T g.NT)} (hvw : g.Produces v w) (p : List (Symbol T g.NT)) :
                                    g.Produces (p ++ v) (p ++ w)

                                    Add extra prefix to context-free producing.

                                    theorem ContextFreeGrammar.Produces.append_right {T : Type u_1} {g : ContextFreeGrammar T} {v w : List (Symbol T g.NT)} (hvw : g.Produces v w) (p : List (Symbol T g.NT)) :
                                    g.Produces (v ++ p) (w ++ p)

                                    Add extra postfix to context-free producing.

                                    theorem ContextFreeGrammar.Derives.append_left {T : Type u_1} {g : ContextFreeGrammar T} {v w : List (Symbol T g.NT)} (hvw : g.Derives v w) (p : List (Symbol T g.NT)) :
                                    g.Derives (p ++ v) (p ++ w)

                                    Add extra prefix to context-free deriving.

                                    theorem ContextFreeGrammar.Derives.append_right {T : Type u_1} {g : ContextFreeGrammar T} {v w : List (Symbol T g.NT)} (hvw : g.Derives v w) (p : List (Symbol T g.NT)) :
                                    g.Derives (v ++ p) (w ++ p)

                                    Add extra postfix to context-free deriving.

                                    def Language.IsContextFree {T : Type u_1} (L : Language T) :

                                    Context-free languages are defined by context-free grammars.

                                    Equations
                                      Instances For
                                        def ContextFreeRule.reverse {T : Type u_1} {N : Type u_2} (r : ContextFreeRule T N) :

                                        Rules for a grammar for a reversed language.

                                        Equations
                                          Instances For
                                            theorem ContextFreeRule.Rewrites.reverse {T : Type u_1} {N : Type u_2} {r : ContextFreeRule T N} {u v : List (Symbol T N)} :

                                            Grammar for a reversed language.

                                            Equations
                                              Instances For

                                                The class of context-free languages is closed under reversal.