Functors from categories of topological spaces to light condensed sets #
This file defines the embedding of the test objects (light profinite sets) into light condensed sets.
Main definitions #
lightProfiniteToLightCondSet : LightProfinite.{u} โฅค LightCondSet.{u}is the yoneda sheaf functor.
The functor from LightProfinite.{u} to LightCondSet.{u} given by the Yoneda sheaf.
Equations
Instances For
@[reducible, inline]
Dot notation for the value of lightProfiniteToLightCondSet.
Equations
Instances For
The functor from LightProfinite to LightCondSet factors through TopCat.
Equations
Instances For
@[simp]
theorem
lightProfiniteToLightCondSetIsoTopCatToLightCondSet_inv_app_val_app_hom_hom
(X : LightProfinite)
(Xโ : LightProfiniteแตแต)
(aโ :
((CategoryTheory.sheafToPresheaf (CategoryTheory.coherentTopology LightProfinite) (Type u)).obj
((LightProfinite.toTopCat.comp topCatToLightCondSet).obj X)).obj
Xโ)
:
TopCat.Hom.hom ((lightProfiniteToLightCondSetIsoTopCatToLightCondSet.inv.app X).val.app Xโ aโ).hom = aโ
@[simp]
theorem
lightProfiniteToLightCondSetIsoTopCatToLightCondSet_hom_app_val_app_apply
(X : LightProfinite)
(Xโ : LightProfiniteแตแต)
(aโ :
((CategoryTheory.sheafToPresheaf (CategoryTheory.coherentTopology LightProfinite) (Type u)).obj
(lightProfiniteToLightCondSet.obj X)).obj
Xโ)
(a : โ(Opposite.unop Xโ).toTop)
:
((lightProfiniteToLightCondSetIsoTopCatToLightCondSet.hom.app X).val.app Xโ aโ) a = (CategoryTheory.ConcreteCategory.hom aโ.hom) a
instance
instPreservesLimitsOfShapeLightProfiniteLightCondSetLightProfiniteToLightCondSetOfCountableCategory
{J : Type}
[CategoryTheory.SmallCategory J]
[CategoryTheory.CountableCategory J]
:
The functor from LightProfinite to LightCondSet preserves countable limits.
The functor from LightProfinite to LightCondSet preserves finite limits.
The functor from LightProfinite to LightCondSet is monoidal with respect to the cartesian
monoidal structure.