Difference of finite sets #
Main declarations #
Finset.instSDiff: Defines the set differences \ tfor finsetssandt.Finset.instGeneralizedBooleanAlgebra: Finsets almost have a Boolean algebra structure
Tags #
finite sets, finset
sdiff #
s \ t is the set consisting of the elements of s that are not in t.
Equations
@[simp]
@[simp]
@[simp]
Equations
theorem
Finset.notMem_sdiff_of_mem_right
{α : Type u_1}
[DecidableEq α]
{s t : Finset α}
{a : α}
(h : a ∈ t)
:
a ∉ s \ t
theorem
Finset.notMem_sdiff_of_notMem_left
{α : Type u_1}
[DecidableEq α]
{s t : Finset α}
{a : α}
(h : a ∉ s)
:
a ∉ s \ t
theorem
Finset.sdiff_union_of_subset
{α : Type u_1}
[DecidableEq α]
{s₁ s₂ : Finset α}
(h : s₁ ⊆ s₂)
:
See also Finset.sdiff_inter_right_comm.
See also Finset.inter_sdiff_assoc.
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Finset.sdiff_subset_sdiff
{α : Type u_1}
[DecidableEq α]
{s t u v : Finset α}
(hst : s ⊆ t)
(hvu : v ⊆ u)
:
@[simp]
@[simp]
@[simp]
theorem
Finset.union_sdiff_cancel_left
{α : Type u_1}
[DecidableEq α]
{s t : Finset α}
(h : Disjoint s t)
:
theorem
Finset.union_sdiff_cancel_right
{α : Type u_1}
[DecidableEq α]
{s t : Finset α}
(h : Disjoint s t)
:
@[simp]
@[simp]
theorem
Finset.insert_sdiff_of_notMem
{α : Type u_1}
[DecidableEq α]
(s : Finset α)
{t : Finset α}
{x : α}
(h : x ∉ t)
:
theorem
Finset.insert_sdiff_of_mem
{α : Type u_1}
[DecidableEq α]
{t : Finset α}
(s : Finset α)
{x : α}
(h : x ∈ t)
:
@[simp]
theorem
Finset.insert_sdiff_self_of_mem
{α : Type u_1}
[DecidableEq α]
{s : Finset α}
{a : α}
(ha : a ∈ s)
:
@[simp]
theorem
Finset.insert_sdiff_cancel
{α : Type u_1}
[DecidableEq α]
{s : Finset α}
{a : α}
(ha : a ∉ s)
:
@[simp]
theorem
Finset.sdiff_insert_of_notMem
{α : Type u_1}
[DecidableEq α]
{s : Finset α}
{x : α}
(h : x ∉ s)
(t : Finset α)
:
@[simp]
theorem
Finset.sdiff_ssubset
{α : Type u_1}
[DecidableEq α]
{s t : Finset α}
(h : t ⊆ s)
(ht : t.Nonempty)
:
theorem
Finset.Nontrivial.sdiff_singleton_nonempty
{α : Type u_1}
[DecidableEq α]
{c : α}
{s : Finset α}
(hS : s.Nontrivial)
:
theorem
Finset.sdiff_sdiff_eq_sdiff_union
{α : Type u_1}
[DecidableEq α]
{s t u : Finset α}
(h : u ⊆ s)
:
theorem
Finset.sdiff_eq_self_of_disjoint
{α : Type u_1}
[DecidableEq α]
{s t : Finset α}
(h : Disjoint s t)
: