Products of lists of prime elements. #
This file contains some theorems relating Prime and products of Lists.
theorem
Prime.dvd_prod_iff
{M : Type u_1}
[CommMonoidWithZero M]
{p : M}
{L : List M}
(pp : Prime p)
:
Prime p divides the product of a list L iff it divides some a ā L
theorem
Prime.not_dvd_prod
{M : Type u_1}
[CommMonoidWithZero M]
{p : M}
{L : List M}
(pp : Prime p)
(hL : ā a ā L, ¬p ⣠a)
:
theorem
mem_list_primes_of_dvd_prod
{M : Type u_1}
[CommMonoidWithZero M]
[IsCancelMulZero M]
[Subsingleton MĖ£]
{p : M}
(hp : Prime p)
{L : List M}
(hL : ā q ā L, Prime q)
(hpL : p ⣠L.prod)
:
theorem
perm_of_prod_eq_prod
{M : Type u_1}
[CommMonoidWithZero M]
[IsCancelMulZero M]
[Subsingleton MĖ£]
{lā lā : List M}
: