Documentation

Mathlib.Data.List.Prime

Products of lists of prime elements. #

This file contains some theorems relating Prime and products of Lists.

theorem Prime.dvd_prod_iff {M : Type u_1} [CommMonoidWithZero M] {p : M} {L : List M} (pp : Prime p) :
p ∣ L.prod ↔ ∃ a ∈ L, p ∣ a

Prime p divides the product of a list L iff it divides some a ∈ L

theorem Prime.not_dvd_prod {M : Type u_1} [CommMonoidWithZero M] {p : M} {L : List M} (pp : Prime p) (hL : āˆ€ a ∈ L, ¬p ∣ a) :
theorem mem_list_primes_of_dvd_prod {M : Type u_1} [CommMonoidWithZero M] [IsCancelMulZero M] [Subsingleton MĖ£] {p : M} (hp : Prime p) {L : List M} (hL : āˆ€ q ∈ L, Prime q) (hpL : p ∣ L.prod) :
p ∈ L
theorem perm_of_prod_eq_prod {M : Type u_1} [CommMonoidWithZero M] [IsCancelMulZero M] [Subsingleton MĖ£] {l₁ lā‚‚ : List M} :
l₁.prod = lā‚‚.prod → (āˆ€ p ∈ l₁, Prime p) → (āˆ€ p ∈ lā‚‚, Prime p) → l₁.Perm lā‚‚