Documentation

Mathlib.Data.Rat.Cast.Order

Casts of rational numbers into linear ordered fields. #

theorem Rat.cast_pos_of_pos {q : โ„š} {K : Type u_5} [Field K] [LinearOrder K] [IsStrictOrderedRing K] (hq : 0 < q) :
0 < โ†‘q

Coercion from โ„š as an order embedding.

Equations
    Instances For
      @[simp]
      theorem Rat.castOrderEmbedding_apply {K : Type u_5} [Field K] [LinearOrder K] [IsStrictOrderedRing K] (aโœ : โ„š) :
      castOrderEmbedding aโœ = โ†‘aโœ
      @[simp]
      theorem Rat.cast_le {p q : โ„š} {K : Type u_5} [Field K] [LinearOrder K] [IsStrictOrderedRing K] :
      โ†‘p โ‰ค โ†‘q โ†” p โ‰ค q
      @[simp]
      theorem Rat.cast_lt {p q : โ„š} {K : Type u_5} [Field K] [LinearOrder K] [IsStrictOrderedRing K] :
      โ†‘p < โ†‘q โ†” p < q
      @[simp]
      theorem Rat.cast_pos {q : โ„š} {K : Type u_5} [Field K] [LinearOrder K] [IsStrictOrderedRing K] :
      0 < โ†‘q โ†” 0 < q
      @[simp]
      theorem Rat.cast_lt_zero {q : โ„š} {K : Type u_5} [Field K] [LinearOrder K] [IsStrictOrderedRing K] :
      โ†‘q < 0 โ†” q < 0
      @[simp]
      theorem Rat.cast_le_natCast {K : Type u_5} [Field K] [LinearOrder K] [IsStrictOrderedRing K] {m : โ„š} {n : โ„•} :
      โ†‘m โ‰ค โ†‘n โ†” m โ‰ค โ†‘n
      @[simp]
      theorem Rat.natCast_le_cast {K : Type u_5} [Field K] [LinearOrder K] [IsStrictOrderedRing K] {m : โ„•} {n : โ„š} :
      โ†‘m โ‰ค โ†‘n โ†” โ†‘m โ‰ค n
      @[simp]
      theorem Rat.cast_le_intCast {K : Type u_5} [Field K] [LinearOrder K] [IsStrictOrderedRing K] {m : โ„š} {n : โ„ค} :
      โ†‘m โ‰ค โ†‘n โ†” m โ‰ค โ†‘n
      @[simp]
      theorem Rat.intCast_le_cast {K : Type u_5} [Field K] [LinearOrder K] [IsStrictOrderedRing K] {m : โ„ค} {n : โ„š} :
      โ†‘m โ‰ค โ†‘n โ†” โ†‘m โ‰ค n
      @[simp]
      theorem Rat.cast_lt_natCast {K : Type u_5} [Field K] [LinearOrder K] [IsStrictOrderedRing K] {m : โ„š} {n : โ„•} :
      โ†‘m < โ†‘n โ†” m < โ†‘n
      @[simp]
      theorem Rat.natCast_lt_cast {K : Type u_5} [Field K] [LinearOrder K] [IsStrictOrderedRing K] {m : โ„•} {n : โ„š} :
      โ†‘m < โ†‘n โ†” โ†‘m < n
      @[simp]
      theorem Rat.cast_lt_intCast {K : Type u_5} [Field K] [LinearOrder K] [IsStrictOrderedRing K] {m : โ„š} {n : โ„ค} :
      โ†‘m < โ†‘n โ†” m < โ†‘n
      @[simp]
      theorem Rat.intCast_lt_cast {K : Type u_5} [Field K] [LinearOrder K] [IsStrictOrderedRing K] {m : โ„ค} {n : โ„š} :
      โ†‘m < โ†‘n โ†” โ†‘m < n
      @[simp]
      theorem Rat.cast_min {K : Type u_5} [Field K] [LinearOrder K] [IsStrictOrderedRing K] (p q : โ„š) :
      โ†‘(min p q) = min โ†‘p โ†‘q
      @[simp]
      theorem Rat.cast_max {K : Type u_5} [Field K] [LinearOrder K] [IsStrictOrderedRing K] (p q : โ„š) :
      โ†‘(max p q) = max โ†‘p โ†‘q
      @[simp]
      theorem Rat.cast_abs {K : Type u_5} [Field K] [LinearOrder K] [IsStrictOrderedRing K] (q : โ„š) :
      โ†‘|q| = |โ†‘q|

      Coercion from โ„š as an order embedding.

      Equations
        Instances For
          @[simp]
          theorem NNRat.cast_lt {K : Type u_5} [Semifield K] [LinearOrder K] [IsStrictOrderedRing K] {p q : โ„šโ‰ฅ0} :
          โ†‘p < โ†‘q โ†” p < q
          @[simp]
          theorem NNRat.cast_le_natCast {K : Type u_5} [Semifield K] [LinearOrder K] [IsStrictOrderedRing K] {m : โ„šโ‰ฅ0} {n : โ„•} :
          โ†‘m โ‰ค โ†‘n โ†” m โ‰ค โ†‘n
          @[simp]
          theorem NNRat.natCast_le_cast {K : Type u_5} [Semifield K] [LinearOrder K] [IsStrictOrderedRing K] {m : โ„•} {n : โ„šโ‰ฅ0} :
          โ†‘m โ‰ค โ†‘n โ†” โ†‘m โ‰ค n
          @[simp]
          theorem NNRat.cast_lt_natCast {K : Type u_5} [Semifield K] [LinearOrder K] [IsStrictOrderedRing K] {m : โ„šโ‰ฅ0} {n : โ„•} :
          โ†‘m < โ†‘n โ†” m < โ†‘n
          @[simp]
          theorem NNRat.natCast_lt_cast {K : Type u_5} [Semifield K] [LinearOrder K] [IsStrictOrderedRing K] {m : โ„•} {n : โ„šโ‰ฅ0} :
          โ†‘m < โ†‘n โ†” โ†‘m < n
          @[simp]
          theorem NNRat.cast_min {K : Type u_5} [Semifield K] [LinearOrder K] [IsStrictOrderedRing K] (p q : โ„šโ‰ฅ0) :
          โ†‘(min p q) = min โ†‘p โ†‘q
          @[simp]
          theorem NNRat.cast_max {K : Type u_5} [Semifield K] [LinearOrder K] [IsStrictOrderedRing K] (p q : โ„šโ‰ฅ0) :
          โ†‘(max p q) = max โ†‘p โ†‘q

          Extension for Rat.cast.

          Equations
            Instances For

              Extension for NNRat.cast.

              Equations
                Instances For