Casts of rational numbers into linear ordered fields. #
theorem
Rat.cast_pos_of_pos
{q : โ}
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
(hq : 0 < q)
:
Coercion from โ as an order embedding.
Equations
Instances For
@[simp]
theorem
Rat.castOrderEmbedding_apply
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
(aโ : โ)
:
@[simp]
@[simp]
@[simp]
theorem
Rat.cast_nonneg
{q : โ}
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
:
@[simp]
theorem
Rat.cast_nonpos
{q : โ}
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
:
@[simp]
@[simp]
theorem
Rat.cast_lt_zero
{q : โ}
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
:
@[simp]
theorem
Rat.cast_le_natCast
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
{m : โ}
{n : โ}
:
@[simp]
theorem
Rat.natCast_le_cast
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
{m : โ}
{n : โ}
:
@[simp]
theorem
Rat.cast_le_intCast
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
{m : โ}
{n : โค}
:
@[simp]
theorem
Rat.intCast_le_cast
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
{m : โค}
{n : โ}
:
@[simp]
theorem
Rat.cast_lt_natCast
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
{m : โ}
{n : โ}
:
@[simp]
theorem
Rat.natCast_lt_cast
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
{m : โ}
{n : โ}
:
@[simp]
theorem
Rat.cast_lt_intCast
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
{m : โ}
{n : โค}
:
@[simp]
theorem
Rat.intCast_lt_cast
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
{m : โค}
{n : โ}
:
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Rat.preimage_cast_Icc
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
(p q : โ)
:
@[simp]
theorem
Rat.preimage_cast_Ico
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
(p q : โ)
:
@[simp]
theorem
Rat.preimage_cast_Ioc
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
(p q : โ)
:
@[simp]
theorem
Rat.preimage_cast_Ioo
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
(p q : โ)
:
@[simp]
theorem
Rat.preimage_cast_Ici
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
(q : โ)
:
@[simp]
theorem
Rat.preimage_cast_Iic
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
(q : โ)
:
@[simp]
theorem
Rat.preimage_cast_Ioi
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
(q : โ)
:
@[simp]
theorem
Rat.preimage_cast_Iio
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
(q : โ)
:
@[simp]
theorem
Rat.preimage_cast_uIcc
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
(p q : โ)
:
@[simp]
theorem
Rat.preimage_cast_uIoc
{K : Type u_5}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
(p q : โ)
:
theorem
NNRat.cast_strictMono
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
:
Coercion from โ as an order embedding.
Equations
Instances For
@[simp]
theorem
NNRat.castOrderEmbedding_apply
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
(aโ : โโฅ0)
:
@[simp]
theorem
NNRat.cast_le
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
{p q : โโฅ0}
:
@[simp]
theorem
NNRat.cast_lt
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
{p q : โโฅ0}
:
@[simp]
theorem
NNRat.cast_nonpos
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
{q : โโฅ0}
:
@[simp]
theorem
NNRat.cast_pos
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
{q : โโฅ0}
:
theorem
NNRat.cast_lt_zero
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
{q : โโฅ0}
:
@[simp]
theorem
NNRat.not_cast_lt_zero
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
{q : โโฅ0}
:
@[simp]
theorem
NNRat.cast_le_one
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
{p : โโฅ0}
:
@[simp]
theorem
NNRat.one_le_cast
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
{p : โโฅ0}
:
@[simp]
theorem
NNRat.cast_lt_one
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
{p : โโฅ0}
:
@[simp]
theorem
NNRat.one_lt_cast
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
{p : โโฅ0}
:
@[simp]
theorem
NNRat.cast_le_ofNat
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
{p : โโฅ0}
{n : โ}
[n.AtLeastTwo]
:
@[simp]
theorem
NNRat.ofNat_le_cast
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
{p : โโฅ0}
{n : โ}
[n.AtLeastTwo]
:
@[simp]
theorem
NNRat.cast_lt_ofNat
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
{p : โโฅ0}
{n : โ}
[n.AtLeastTwo]
:
@[simp]
theorem
NNRat.ofNat_lt_cast
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
{p : โโฅ0}
{n : โ}
[n.AtLeastTwo]
:
@[simp]
theorem
NNRat.cast_le_natCast
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
{m : โโฅ0}
{n : โ}
:
@[simp]
theorem
NNRat.natCast_le_cast
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
{m : โ}
{n : โโฅ0}
:
@[simp]
theorem
NNRat.cast_lt_natCast
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
{m : โโฅ0}
{n : โ}
:
@[simp]
theorem
NNRat.natCast_lt_cast
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
{m : โ}
{n : โโฅ0}
:
@[simp]
theorem
NNRat.cast_min
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
(p q : โโฅ0)
:
@[simp]
theorem
NNRat.cast_max
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
(p q : โโฅ0)
:
@[simp]
theorem
NNRat.preimage_cast_Icc
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
(p q : โโฅ0)
:
@[simp]
theorem
NNRat.preimage_cast_Ico
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
(p q : โโฅ0)
:
@[simp]
theorem
NNRat.preimage_cast_Ioc
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
(p q : โโฅ0)
:
@[simp]
theorem
NNRat.preimage_cast_Ioo
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
(p q : โโฅ0)
:
@[simp]
theorem
NNRat.preimage_cast_Ici
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
(p : โโฅ0)
:
@[simp]
theorem
NNRat.preimage_cast_Iic
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
(p : โโฅ0)
:
@[simp]
theorem
NNRat.preimage_cast_Ioi
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
(p : โโฅ0)
:
@[simp]
theorem
NNRat.preimage_cast_Iio
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
(p : โโฅ0)
:
@[simp]
theorem
NNRat.preimage_cast_uIcc
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
(p q : โโฅ0)
:
@[simp]
theorem
NNRat.preimage_cast_uIoc
{K : Type u_5}
[Semifield K]
[LinearOrder K]
[IsStrictOrderedRing K]
(p q : โโฅ0)
:
Extension for Rat.cast.
Equations
Instances For
Extension for NNRat.cast.