Documentation

Mathlib.FieldTheory.Galois.GaloisClosure

Main definitions and results #

In a field extension K/k

TODO #

structure FiniteGaloisIntermediateField (k : Type u_1) (K : Type u_2) [Field k] [Field K] [Algebra k K] extends IntermediateField k K :
Type u_2

The type of intermediate fields of K/k that are finite and Galois over k

Instances For
    instance FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateFieldMax {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (Lโ‚ Lโ‚‚ : IntermediateField k K) [IsGalois k โ†ฅLโ‚] [IsGalois k โ†ฅLโ‚‚] :
    IsGalois k โ†ฅ(Lโ‚ โŠ” Lโ‚‚)

    Turns the collection of finite Galois IntermediateFields of K/k into a lattice.

    instance FiniteGaloisIntermediateField.instFiniteDimensionalSubtypeMemIntermediateFieldMin {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (Lโ‚ Lโ‚‚ : IntermediateField k K) [FiniteDimensional k โ†ฅLโ‚] :
    FiniteDimensional k โ†ฅ(Lโ‚ โŠ“ Lโ‚‚)
    instance FiniteGaloisIntermediateField.instFiniteDimensionalSubtypeMemIntermediateFieldMin_1 {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (Lโ‚ Lโ‚‚ : IntermediateField k K) [FiniteDimensional k โ†ฅLโ‚‚] :
    FiniteDimensional k โ†ฅ(Lโ‚ โŠ“ Lโ‚‚)
    instance FiniteGaloisIntermediateField.instIsSeparableSubtypeMemIntermediateFieldMin {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (Lโ‚ Lโ‚‚ : IntermediateField k K) [Algebra.IsSeparable k โ†ฅLโ‚] :
    Algebra.IsSeparable k โ†ฅ(Lโ‚ โŠ“ Lโ‚‚)
    instance FiniteGaloisIntermediateField.instIsSeparableSubtypeMemIntermediateFieldMin_1 {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (Lโ‚ Lโ‚‚ : IntermediateField k K) [Algebra.IsSeparable k โ†ฅLโ‚‚] :
    Algebra.IsSeparable k โ†ฅ(Lโ‚ โŠ“ Lโ‚‚)
    instance FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateFieldMin {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (Lโ‚ Lโ‚‚ : IntermediateField k K) [IsGalois k โ†ฅLโ‚] [IsGalois k โ†ฅLโ‚‚] :
    IsGalois k โ†ฅ(Lโ‚ โŠ“ Lโ‚‚)
    @[simp]
    theorem FiniteGaloisIntermediateField.le_iff {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (Lโ‚ Lโ‚‚ : FiniteGaloisIntermediateField k K) :
    noncomputable def FiniteGaloisIntermediateField.adjoin (k : Type u_1) {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (s : Set K) [Finite โ†‘s] :

    The minimal (finite) Galois intermediate field containing a finite set s : Set K in a Galois extension K/k defined as the normal closure of the field obtained by adjoining the set s : Set K to k.

    Equations
      Instances For
        theorem FiniteGaloisIntermediateField.subset_adjoin (k : Type u_1) {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (s : Set K) [Finite โ†‘s] :
        @[simp]
        theorem FiniteGaloisIntermediateField.adjoin_map {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (f : K โ†’โ‚[k] K) (s : Set K) [Finite โ†‘s] :
        adjoin k (โ‡‘f '' s) = adjoin k s
        @[simp]
        theorem FiniteGaloisIntermediateField.adjoin_simple_map_algHom {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (f : K โ†’โ‚[k] K) (x : K) :
        adjoin k {f x} = adjoin k {x}
        @[simp]
        theorem FiniteGaloisIntermediateField.adjoin_simple_map_algEquiv {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (f : Gal(K/k)) (x : K) :
        adjoin k {f x} = adjoin k {x}