Documentation

Mathlib.Geometry.Euclidean.Angle.Oriented.RightAngle

Oriented angles in right-angled triangles. #

This file proves basic geometric results about distances and oriented angles in (possibly degenerate) right-angled triangles in real inner product spaces and Euclidean affine spaces.

An angle in a right-angled triangle expressed using arccos.

An angle in a right-angled triangle expressed using arccos.

An angle in a right-angled triangle expressed using arcsin.

An angle in a right-angled triangle expressed using arcsin.

An angle in a right-angled triangle expressed using arctan.

An angle in a right-angled triangle expressed using arctan.

The cosine of an angle in a right-angled triangle as a ratio of sides.

The cosine of an angle in a right-angled triangle as a ratio of sides.

The sine of an angle in a right-angled triangle as a ratio of sides.

The sine of an angle in a right-angled triangle as a ratio of sides.

The tangent of an angle in a right-angled triangle as a ratio of sides.

The tangent of an angle in a right-angled triangle as a ratio of sides.

The cosine of an angle in a right-angled triangle multiplied by the hypotenuse equals the adjacent side.

The cosine of an angle in a right-angled triangle multiplied by the hypotenuse equals the adjacent side.

The sine of an angle in a right-angled triangle multiplied by the hypotenuse equals the opposite side.

The sine of an angle in a right-angled triangle multiplied by the hypotenuse equals the opposite side.

The tangent of an angle in a right-angled triangle multiplied by the adjacent side equals the opposite side.

The tangent of an angle in a right-angled triangle multiplied by the adjacent side equals the opposite side.

A side of a right-angled triangle divided by the cosine of the adjacent angle equals the hypotenuse.

A side of a right-angled triangle divided by the cosine of the adjacent angle equals the hypotenuse.

A side of a right-angled triangle divided by the sine of the opposite angle equals the hypotenuse.

A side of a right-angled triangle divided by the sine of the opposite angle equals the hypotenuse.

A side of a right-angled triangle divided by the tangent of the opposite angle equals the adjacent side.

A side of a right-angled triangle divided by the tangent of the opposite angle equals the adjacent side.

An angle in a right-angled triangle expressed using arccos, version subtracting vectors.

An angle in a right-angled triangle expressed using arccos, version subtracting vectors.

An angle in a right-angled triangle expressed using arcsin, version subtracting vectors.

An angle in a right-angled triangle expressed using arcsin, version subtracting vectors.

An angle in a right-angled triangle expressed using arctan, version subtracting vectors.

An angle in a right-angled triangle expressed using arctan, version subtracting vectors.

The cosine of an angle in a right-angled triangle as a ratio of sides, version subtracting vectors.

The cosine of an angle in a right-angled triangle as a ratio of sides, version subtracting vectors.

The sine of an angle in a right-angled triangle as a ratio of sides, version subtracting vectors.

The sine of an angle in a right-angled triangle as a ratio of sides, version subtracting vectors.

The tangent of an angle in a right-angled triangle as a ratio of sides, version subtracting vectors.

The tangent of an angle in a right-angled triangle as a ratio of sides, version subtracting vectors.

The cosine of an angle in a right-angled triangle multiplied by the hypotenuse equals the adjacent side, version subtracting vectors.

The cosine of an angle in a right-angled triangle multiplied by the hypotenuse equals the adjacent side, version subtracting vectors.

The sine of an angle in a right-angled triangle multiplied by the hypotenuse equals the opposite side, version subtracting vectors.

The sine of an angle in a right-angled triangle multiplied by the hypotenuse equals the opposite side, version subtracting vectors.

The tangent of an angle in a right-angled triangle multiplied by the adjacent side equals the opposite side, version subtracting vectors.

The tangent of an angle in a right-angled triangle multiplied by the adjacent side equals the opposite side, version subtracting vectors.

A side of a right-angled triangle divided by the cosine of the adjacent angle equals the hypotenuse, version subtracting vectors.

A side of a right-angled triangle divided by the cosine of the adjacent angle equals the hypotenuse, version subtracting vectors.

A side of a right-angled triangle divided by the sine of the opposite angle equals the hypotenuse, version subtracting vectors.

A side of a right-angled triangle divided by the sine of the opposite angle equals the hypotenuse, version subtracting vectors.

A side of a right-angled triangle divided by the tangent of the opposite angle equals the adjacent side, version subtracting vectors.

A side of a right-angled triangle divided by the tangent of the opposite angle equals the adjacent side, version subtracting vectors.

theorem Orientation.oangle_add_right_smul_rotation_pi_div_two {V : Type u_1} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [hd2 : Fact (Module.finrank ā„ V = 2)] (o : Orientation ā„ V (Fin 2)) {x : V} (h : x ≠ 0) (r : ā„) :
o.oangle x (x + r • (o.rotation ↑(Real.pi / 2)) x) = ↑(Real.arctan r)

An angle in a right-angled triangle expressed using arctan, where one side is a multiple of a rotation of another by π / 2.

theorem Orientation.oangle_add_left_smul_rotation_pi_div_two {V : Type u_1} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [hd2 : Fact (Module.finrank ā„ V = 2)] (o : Orientation ā„ V (Fin 2)) {x : V} (h : x ≠ 0) (r : ā„) :
o.oangle (x + r • (o.rotation ↑(Real.pi / 2)) x) (r • (o.rotation ↑(Real.pi / 2)) x) = ↑(Real.arctan r⁻¹)

An angle in a right-angled triangle expressed using arctan, where one side is a multiple of a rotation of another by π / 2.

theorem Orientation.tan_oangle_add_right_smul_rotation_pi_div_two {V : Type u_1} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [hd2 : Fact (Module.finrank ā„ V = 2)] (o : Orientation ā„ V (Fin 2)) {x : V} (h : x ≠ 0) (r : ā„) :
(o.oangle x (x + r • (o.rotation ↑(Real.pi / 2)) x)).tan = r

The tangent of an angle in a right-angled triangle, where one side is a multiple of a rotation of another by π / 2.

theorem Orientation.tan_oangle_add_left_smul_rotation_pi_div_two {V : Type u_1} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [hd2 : Fact (Module.finrank ā„ V = 2)] (o : Orientation ā„ V (Fin 2)) {x : V} (h : x ≠ 0) (r : ā„) :
(o.oangle (x + r • (o.rotation ↑(Real.pi / 2)) x) (r • (o.rotation ↑(Real.pi / 2)) x)).tan = r⁻¹

The tangent of an angle in a right-angled triangle, where one side is a multiple of a rotation of another by π / 2.

theorem Orientation.oangle_sub_right_smul_rotation_pi_div_two {V : Type u_1} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [hd2 : Fact (Module.finrank ā„ V = 2)] (o : Orientation ā„ V (Fin 2)) {x : V} (h : x ≠ 0) (r : ā„) :
o.oangle (r • (o.rotation ↑(Real.pi / 2)) x) (r • (o.rotation ↑(Real.pi / 2)) x - x) = ↑(Real.arctan r⁻¹)

An angle in a right-angled triangle expressed using arctan, where one side is a multiple of a rotation of another by π / 2, version subtracting vectors.

theorem Orientation.oangle_sub_left_smul_rotation_pi_div_two {V : Type u_1} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [hd2 : Fact (Module.finrank ā„ V = 2)] (o : Orientation ā„ V (Fin 2)) {x : V} (h : x ≠ 0) (r : ā„) :
o.oangle (x - r • (o.rotation ↑(Real.pi / 2)) x) x = ↑(Real.arctan r)

An angle in a right-angled triangle expressed using arctan, where one side is a multiple of a rotation of another by π / 2, version subtracting vectors.

theorem EuclideanGeometry.oangle_right_eq_arccos_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
oangle pā‚‚ pā‚ƒ p₁ = ↑(Real.arccos (dist pā‚ƒ pā‚‚ / dist p₁ pā‚ƒ))

An angle in a right-angled triangle expressed using arccos.

theorem EuclideanGeometry.oangle_left_eq_arccos_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
oangle pā‚ƒ p₁ pā‚‚ = ↑(Real.arccos (dist p₁ pā‚‚ / dist p₁ pā‚ƒ))

An angle in a right-angled triangle expressed using arccos.

theorem EuclideanGeometry.oangle_right_eq_arcsin_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
oangle pā‚‚ pā‚ƒ p₁ = ↑(Real.arcsin (dist p₁ pā‚‚ / dist p₁ pā‚ƒ))

An angle in a right-angled triangle expressed using arcsin.

theorem EuclideanGeometry.oangle_left_eq_arcsin_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
oangle pā‚ƒ p₁ pā‚‚ = ↑(Real.arcsin (dist pā‚ƒ pā‚‚ / dist p₁ pā‚ƒ))

An angle in a right-angled triangle expressed using arcsin.

theorem EuclideanGeometry.oangle_right_eq_arctan_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
oangle pā‚‚ pā‚ƒ p₁ = ↑(Real.arctan (dist p₁ pā‚‚ / dist pā‚ƒ pā‚‚))

An angle in a right-angled triangle expressed using arctan.

theorem EuclideanGeometry.oangle_left_eq_arctan_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
oangle pā‚ƒ p₁ pā‚‚ = ↑(Real.arctan (dist pā‚ƒ pā‚‚ / dist p₁ pā‚‚))

An angle in a right-angled triangle expressed using arctan.

theorem EuclideanGeometry.abs_oangle_toReal_lt_pi_div_two_of_angle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : angle p₁ pā‚‚ pā‚ƒ = Real.pi / 2) :
|(oangle pā‚‚ pā‚ƒ p₁).toReal| < Real.pi / 2

An oriented angle in a right-angled triangle (even a degenerate one) has absolute value less than π / 2. The right-angled property is expressed using unoriented angles to cover either orientation of right-angled triangles and include degenerate cases.

theorem EuclideanGeometry.oangle_eq_oangle_of_two_zsmul_eq_of_angle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ pā‚„ pā‚… p₆ : P} (h : 2 • oangle pā‚‚ pā‚ƒ p₁ = 2 • oangle pā‚… p₆ pā‚„) (hā‚ā‚‚ā‚ƒ : angle p₁ pā‚‚ pā‚ƒ = Real.pi / 2) (h₄₅₆ : angle pā‚„ pā‚… p₆ = Real.pi / 2) :
oangle pā‚‚ pā‚ƒ p₁ = oangle pā‚… p₆ pā‚„

Two oriented angles in right-angled triangles are equal if twice those angles are equal.

theorem EuclideanGeometry.oangle_eq_oangle_rev_of_two_zsmul_eq_of_angle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ pā‚„ pā‚… p₆ : P} (h : 2 • oangle pā‚‚ pā‚ƒ p₁ = 2 • oangle pā‚„ p₆ pā‚…) (hā‚ā‚‚ā‚ƒ : angle p₁ pā‚‚ pā‚ƒ = Real.pi / 2) (h₄₅₆ : angle pā‚„ pā‚… p₆ = Real.pi / 2) :
oangle pā‚‚ pā‚ƒ p₁ = oangle pā‚„ p₆ pā‚…

Two oriented angles in oppositely-oriented right-angled triangles are equal if twice those angles are equal.

theorem EuclideanGeometry.cos_oangle_right_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
(oangle pā‚‚ pā‚ƒ p₁).cos = dist pā‚ƒ pā‚‚ / dist p₁ pā‚ƒ

The cosine of an angle in a right-angled triangle as a ratio of sides.

theorem EuclideanGeometry.cos_oangle_left_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
(oangle pā‚ƒ p₁ pā‚‚).cos = dist p₁ pā‚‚ / dist p₁ pā‚ƒ

The cosine of an angle in a right-angled triangle as a ratio of sides.

theorem EuclideanGeometry.sin_oangle_right_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
(oangle pā‚‚ pā‚ƒ p₁).sin = dist p₁ pā‚‚ / dist p₁ pā‚ƒ

The sine of an angle in a right-angled triangle as a ratio of sides.

theorem EuclideanGeometry.sin_oangle_left_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
(oangle pā‚ƒ p₁ pā‚‚).sin = dist pā‚ƒ pā‚‚ / dist p₁ pā‚ƒ

The sine of an angle in a right-angled triangle as a ratio of sides.

theorem EuclideanGeometry.tan_oangle_right_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
(oangle pā‚‚ pā‚ƒ p₁).tan = dist p₁ pā‚‚ / dist pā‚ƒ pā‚‚

The tangent of an angle in a right-angled triangle as a ratio of sides.

theorem EuclideanGeometry.tan_oangle_left_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
(oangle pā‚ƒ p₁ pā‚‚).tan = dist pā‚ƒ pā‚‚ / dist p₁ pā‚‚

The tangent of an angle in a right-angled triangle as a ratio of sides.

theorem EuclideanGeometry.cos_oangle_right_mul_dist_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
(oangle pā‚‚ pā‚ƒ p₁).cos * dist p₁ pā‚ƒ = dist pā‚ƒ pā‚‚

The cosine of an angle in a right-angled triangle multiplied by the hypotenuse equals the adjacent side.

theorem EuclideanGeometry.cos_oangle_left_mul_dist_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
(oangle pā‚ƒ p₁ pā‚‚).cos * dist p₁ pā‚ƒ = dist p₁ pā‚‚

The cosine of an angle in a right-angled triangle multiplied by the hypotenuse equals the adjacent side.

theorem EuclideanGeometry.sin_oangle_right_mul_dist_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
(oangle pā‚‚ pā‚ƒ p₁).sin * dist p₁ pā‚ƒ = dist p₁ pā‚‚

The sine of an angle in a right-angled triangle multiplied by the hypotenuse equals the opposite side.

theorem EuclideanGeometry.sin_oangle_left_mul_dist_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
(oangle pā‚ƒ p₁ pā‚‚).sin * dist p₁ pā‚ƒ = dist pā‚ƒ pā‚‚

The sine of an angle in a right-angled triangle multiplied by the hypotenuse equals the opposite side.

theorem EuclideanGeometry.tan_oangle_right_mul_dist_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
(oangle pā‚‚ pā‚ƒ p₁).tan * dist pā‚ƒ pā‚‚ = dist p₁ pā‚‚

The tangent of an angle in a right-angled triangle multiplied by the adjacent side equals the opposite side.

theorem EuclideanGeometry.tan_oangle_left_mul_dist_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
(oangle pā‚ƒ p₁ pā‚‚).tan * dist p₁ pā‚‚ = dist pā‚ƒ pā‚‚

The tangent of an angle in a right-angled triangle multiplied by the adjacent side equals the opposite side.

theorem EuclideanGeometry.dist_div_cos_oangle_right_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
dist pā‚ƒ pā‚‚ / (oangle pā‚‚ pā‚ƒ p₁).cos = dist p₁ pā‚ƒ

A side of a right-angled triangle divided by the cosine of the adjacent angle equals the hypotenuse.

theorem EuclideanGeometry.dist_div_cos_oangle_left_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
dist p₁ pā‚‚ / (oangle pā‚ƒ p₁ pā‚‚).cos = dist p₁ pā‚ƒ

A side of a right-angled triangle divided by the cosine of the adjacent angle equals the hypotenuse.

theorem EuclideanGeometry.dist_div_sin_oangle_right_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
dist p₁ pā‚‚ / (oangle pā‚‚ pā‚ƒ p₁).sin = dist p₁ pā‚ƒ

A side of a right-angled triangle divided by the sine of the opposite angle equals the hypotenuse.

theorem EuclideanGeometry.dist_div_sin_oangle_left_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
dist pā‚ƒ pā‚‚ / (oangle pā‚ƒ p₁ pā‚‚).sin = dist p₁ pā‚ƒ

A side of a right-angled triangle divided by the sine of the opposite angle equals the hypotenuse.

theorem EuclideanGeometry.dist_div_tan_oangle_right_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
dist p₁ pā‚‚ / (oangle pā‚‚ pā‚ƒ p₁).tan = dist pā‚ƒ pā‚‚

A side of a right-angled triangle divided by the tangent of the opposite angle equals the adjacent side.

theorem EuclideanGeometry.dist_div_tan_oangle_left_of_oangle_eq_pi_div_two {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ā„ V] [MetricSpace P] [NormedAddTorsor V P] [hd2 : Fact (Module.finrank ā„ V = 2)] [Module.Oriented ā„ V (Fin 2)] {p₁ pā‚‚ pā‚ƒ : P} (h : oangle p₁ pā‚‚ pā‚ƒ = ↑(Real.pi / 2)) :
dist pā‚ƒ pā‚‚ / (oangle pā‚ƒ p₁ pā‚‚).tan = dist p₁ pā‚‚

A side of a right-angled triangle divided by the tangent of the opposite angle equals the adjacent side.