@[reducible, inline]
abbrev
LinearMap.rank
{K : Type u}
{V : Type v}
{V' : Type v'}
[Ring K]
[AddCommGroup V]
[Module K V]
[AddCommGroup V']
[Module K V']
(f : V āā[K] V')
:
rank f is the rank of a LinearMap f, defined as the dimension of f.range.
Equations
Instances For
theorem
LinearMap.rank_le_range
{K : Type u}
{V : Type v}
{V' : Type v'}
[Ring K]
[AddCommGroup V]
[Module K V]
[AddCommGroup V']
[Module K V']
(f : V āā[K] V')
:
theorem
LinearMap.rank_le_domain
{K : Type u}
{V Vā : Type v}
[Ring K]
[AddCommGroup V]
[Module K V]
[AddCommGroup Vā]
[Module K Vā]
(f : V āā[K] Vā)
:
@[simp]
theorem
LinearMap.rank_zero
{K : Type u}
{V : Type v}
{V' : Type v'}
[Ring K]
[AddCommGroup V]
[Module K V]
[AddCommGroup V']
[Module K V']
[Nontrivial K]
:
theorem
LinearMap.rank_comp_le_left
{K : Type u}
{V : Type v}
{V' : Type v'}
{V'' : Type v''}
[Ring K]
[AddCommGroup V]
[Module K V]
[AddCommGroup V']
[Module K V']
[AddCommGroup V'']
[Module K V'']
(g : V āā[K] V')
(f : V' āā[K] V'')
:
theorem
LinearMap.lift_rank_comp_le_right
{K : Type u}
{V : Type v}
{V' : Type v'}
{V'' : Type v''}
[Ring K]
[AddCommGroup V]
[Module K V]
[AddCommGroup V']
[Module K V']
[AddCommGroup V'']
[Module K V'']
(g : V āā[K] V')
(f : V' āā[K] V'')
:
theorem
LinearMap.lift_rank_comp_le
{K : Type u}
{V : Type v}
{V' : Type v'}
{V'' : Type v''}
[Ring K]
[AddCommGroup V]
[Module K V]
[AddCommGroup V']
[Module K V']
[AddCommGroup V'']
[Module K V'']
(g : V āā[K] V')
(f : V' āā[K] V'')
:
The rank of the composition of two maps is less than the minimum of their ranks.
theorem
LinearMap.rank_comp_le_right
{K : Type u}
{V : Type v}
{V' V'ā : Type v'}
[Ring K]
[AddCommGroup V]
[Module K V]
[AddCommGroup V']
[Module K V']
[AddCommGroup V'ā]
[Module K V'ā]
(g : V āā[K] V')
(f : V' āā[K] V'ā)
:
theorem
LinearMap.rank_comp_le
{K : Type u}
{V : Type v}
{V' V'ā : Type v'}
[Ring K]
[AddCommGroup V]
[Module K V]
[AddCommGroup V']
[Module K V']
[AddCommGroup V'ā]
[Module K V'ā]
(g : V āā[K] V')
(f : V' āā[K] V'ā)
:
The rank of the composition of two maps is less than the minimum of their ranks.
See lift_rank_comp_le for the universe-polymorphic version.
theorem
LinearMap.rank_add_le
{K : Type u}
{V : Type v}
{V' : Type v'}
[DivisionRing K]
[AddCommGroup V]
[Module K V]
[AddCommGroup V']
[Module K V']
(f g : V āā[K] V')
:
theorem
LinearMap.rank_finset_sum_le
{K : Type u}
{V : Type v}
{V' : Type v'}
[DivisionRing K]
[AddCommGroup V]
[Module K V]
[AddCommGroup V']
[Module K V']
{Ī· : Type u_1}
(s : Finset Ī·)
(f : Ī· ā V āā[K] V')
:
theorem
LinearMap.le_rank_iff_exists_linearIndependent
{K : Type u}
{V : Type v}
{V' : Type v'}
[DivisionRing K]
[AddCommGroup V]
[Module K V]
[AddCommGroup V']
[Module K V']
{c : Cardinal.{v'}}
{f : V āā[K] V'}
:
c ⤠f.rank ā ā (s : Set V), Cardinal.lift.{v', v} (Cardinal.mk ās) = Cardinal.lift.{v, v'} c ā§ LinearIndepOn K (āf) s
theorem
LinearMap.le_rank_iff_exists_linearIndependent_finset
{K : Type u}
{V : Type v}
{V' : Type v'}
[DivisionRing K]
[AddCommGroup V]
[Module K V]
[AddCommGroup V']
[Module K V']
{n : ā}
{f : V āā[K] V'}
: