Documentation

Mathlib.MeasureTheory.Function.LpSeminorm.LpNorm

Real-valued Lᵖ norm #

This file proves theorems about MeasureTheory.lpNorm, a real-valued version of MeasureTheory.eLpNorm.

theorem MeasureTheory.toReal_eLpNorm {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : AEStronglyMeasurable f μ) :
(eLpNorm f p μ).toReal = lpNorm f p μ
theorem MeasureTheory.ofReal_lpNorm {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : MemLp f p μ) :
ENNReal.ofReal (lpNorm f p μ) = eLpNorm f p μ
@[simp]
theorem MeasureTheory.lpNorm_of_not_aestronglyMeasurable {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : ¬AEStronglyMeasurable f μ) :
lpNorm f p μ = 0
@[simp]
theorem MeasureTheory.lpNorm_of_not_memLp {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf' : ¬MemLp f p μ) :
lpNorm f p μ = 0
@[simp]
theorem MeasureTheory.lpNorm_nonneg {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} :
0 lpNorm f p μ
theorem MeasureTheory.lpNorm_eq_integral_norm_rpow_toReal {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hp₀ : p 0) (hp : p ) (hf : AEStronglyMeasurable f μ) :
lpNorm f p μ = ( (x : α), f x ^ p.toReal μ) ^ p.toReal⁻¹
theorem MeasureTheory.lpNorm_nnreal_eq_integral_norm_rpow {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {f : αE} {p : NNReal} (hp : p 0) (hf : AEStronglyMeasurable f μ) :
lpNorm f (↑p) μ = ( (x : α), f x ^ p μ) ^ (↑p)⁻¹
theorem MeasureTheory.lpNorm_one_eq_integral_norm {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : AEStronglyMeasurable f μ) :
lpNorm f 1 μ = (x : α), f x μ
@[simp]
theorem MeasureTheory.lpNorm_exponent_zero {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] (f : αE) :
lpNorm f 0 μ = 0
@[simp]
theorem MeasureTheory.lpNorm_measure_zero {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} [NormedAddCommGroup E] (f : αE) :
lpNorm f p 0 = 0
theorem MeasureTheory.ae_le_lpNorm_exponent_top {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : MemLp f μ) :
∀ᵐ (x : α) μ, f x lpNorm f μ
theorem MeasureTheory.lpNorm_exponent_top_eq_essSup {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : MemLp f μ) :
lpNorm f μ = essSup (fun (x : α) => f x) μ
@[simp]
theorem MeasureTheory.lpNorm_zero {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] (p : ENNReal) (μ : Measure α) :
lpNorm 0 p μ = 0
@[simp]
theorem MeasureTheory.lpNorm_fun_zero {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] (p : ENNReal) (μ : Measure α) :
lpNorm (fun (x : α) => 0) p μ = 0
@[simp]
theorem MeasureTheory.lpNorm_eq_zero {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : MemLp f p μ) (hp : p 0) :
lpNorm f p μ = 0 f =ᶠ[ae μ] 0
@[simp]
theorem MeasureTheory.lpNorm_of_isEmpty {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [IsEmpty α] (f : αE) (p : ENNReal) :
lpNorm f p μ = 0
@[simp]
theorem MeasureTheory.lpNorm_neg {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] (f : αE) (p : ENNReal) (μ : Measure α) :
lpNorm (-f) p μ = lpNorm f p μ
@[simp]
theorem MeasureTheory.lpNorm_fun_neg {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] (f : αE) (p : ENNReal) (μ : Measure α) :
lpNorm (fun (x : α) => -f x) p μ = lpNorm f p μ
theorem MeasureTheory.lpNorm_sub_comm {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] (f g : αE) (p : ENNReal) (μ : Measure α) :
lpNorm (f - g) p μ = lpNorm (g - f) p μ
@[simp]
theorem MeasureTheory.lpNorm_norm {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : AEStronglyMeasurable f μ) (p : ENNReal) :
lpNorm (fun (x : α) => f x) p μ = lpNorm f p μ
@[simp]
theorem MeasureTheory.lpNorm_abs {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {f : α} (hf : AEStronglyMeasurable f μ) (p : ENNReal) :
lpNorm |f| p μ = lpNorm f p μ
@[simp]
theorem MeasureTheory.lpNorm_fun_abs {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {f : α} (hf : AEStronglyMeasurable f μ) (p : ENNReal) :
lpNorm (fun (x : α) => |f x|) p μ = lpNorm f p μ
@[simp]
theorem MeasureTheory.lpNorm_const {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (hp : p 0) ( : μ 0) (c : E) :
lpNorm (fun (_x : α) => c) p μ = c * μ.real Set.univ ^ p.toReal⁻¹
@[simp]
theorem MeasureTheory.lpNorm_const' {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (hp₀ : p 0) (hp : p ) (c : E) :
lpNorm (fun (_x : α) => c) p μ = c * μ.real Set.univ ^ p.toReal⁻¹
@[simp]
theorem MeasureTheory.lpNorm_one {α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {𝕜 : Type u_3} [NormedField 𝕜] (hp : p 0) ( : μ 0) :
@[simp]
theorem MeasureTheory.lpNorm_one' {α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {𝕜 : Type u_3} [NormedField 𝕜] (hp₀ : p 0) (hp : p ) (μ : Measure α) :
theorem MeasureTheory.lpNorm_const_smul {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} [NormedAddCommGroup E] {𝕜 : Type u_3} [NormedField 𝕜] [Module 𝕜 E] [NormSMulClass 𝕜 E] (c : 𝕜) (f : αE) (μ : Measure α) :
lpNorm (c f) p μ = c‖₊ * lpNorm f p μ
theorem MeasureTheory.lpNorm_nsmul {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} [NormedAddCommGroup E] [NormedSpace E] (n : ) (f : αE) (μ : Measure α) :
lpNorm (n f) p μ = n lpNorm f p μ
theorem MeasureTheory.lpNorm_natCast_mul {α : Type u_1} {m : MeasurableSpace α} {𝕜 : Type u_3} [NormedField 𝕜] [NormedSpace 𝕜] (n : ) (f : α𝕜) (p : ENNReal) (μ : Measure α) :
lpNorm (n * f) p μ = n * lpNorm f p μ
theorem MeasureTheory.lpNorm_fun_natCast_mul {α : Type u_1} {m : MeasurableSpace α} {𝕜 : Type u_3} [NormedField 𝕜] [NormedSpace 𝕜] (n : ) (f : α𝕜) (p : ENNReal) (μ : Measure α) :
lpNorm (fun (x : α) => n * f x) p μ = n * lpNorm f p μ
theorem MeasureTheory.lpNorm_mul_natCast {α : Type u_1} {m : MeasurableSpace α} {𝕜 : Type u_3} [NormedField 𝕜] [NormedSpace 𝕜] (f : α𝕜) (n : ) (p : ENNReal) (μ : Measure α) :
lpNorm (f * n) p μ = lpNorm f p μ * n
theorem MeasureTheory.lpNorm_fun_mul_natCast {α : Type u_1} {m : MeasurableSpace α} {𝕜 : Type u_3} [NormedField 𝕜] [NormedSpace 𝕜] (f : α𝕜) (n : ) (p : ENNReal) (μ : Measure α) :
lpNorm (fun (x : α) => f x * n) p μ = lpNorm f p μ * n
theorem MeasureTheory.lpNorm_div_natCast {α : Type u_1} {m : MeasurableSpace α} {𝕜 : Type u_3} [NormedField 𝕜] [NormedSpace 𝕜] [CharZero 𝕜] {n : } (hn : n 0) (f : α𝕜) (p : ENNReal) (μ : Measure α) :
lpNorm (f / n) p μ = lpNorm f p μ / n
theorem MeasureTheory.lpNorm_fun_div_natCast {α : Type u_1} {m : MeasurableSpace α} {𝕜 : Type u_3} [NormedField 𝕜] [NormedSpace 𝕜] [CharZero 𝕜] {n : } (hn : n 0) (f : α𝕜) (p : ENNReal) (μ : Measure α) :
lpNorm (fun (x : α) => f x / n) p μ = lpNorm f p μ / n
theorem MeasureTheory.lpNorm_add_le {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f g : αE} (hf : MemLp f p μ) (hp : 1 p) :
lpNorm (f + g) p μ lpNorm f p μ + lpNorm g p μ
theorem MeasureTheory.lpNorm_add_le' {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f g : αE} (hg : MemLp g p μ) (hp : 1 p) :
lpNorm (f + g) p μ lpNorm f p μ + lpNorm g p μ
theorem MeasureTheory.lpNorm_sub_le {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f g : αE} (hf : MemLp f p μ) (hp : 1 p) :
lpNorm (f - g) p μ lpNorm f p μ + lpNorm g p μ
theorem MeasureTheory.lpNorm_le_lpNorm_add_lpNorm_sub' {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f g : αE} (hg : MemLp g p μ) (hp : 1 p) :
lpNorm f p μ lpNorm g p μ + lpNorm (f - g) p μ
theorem MeasureTheory.lpNorm_le_lpNorm_add_lpNorm_sub {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f g : αE} (hg : MemLp g p μ) (hp : 1 p) :
lpNorm f p μ lpNorm g p μ + lpNorm (g - f) p μ
theorem MeasureTheory.lpNorm_le_add_lpNorm_add {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f g : αE} (hg : MemLp g p μ) (hp : 1 p) :
lpNorm f p μ lpNorm (f + g) p μ + lpNorm g p μ
theorem MeasureTheory.lpNorm_sub_le_lpNorm_sub_add_lpNorm_sub {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f g h : αE} (hf : MemLp f p μ) (hg : MemLp g p μ) (hp : 1 p) :
lpNorm (f - h) p μ lpNorm (f - g) p μ + lpNorm (g - h) p μ
theorem MeasureTheory.lpNorm_sum_le {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {ι : Type u_3} {s : Finset ι} {f : ιαE} (hf : is, MemLp (f i) p μ) (hp : 1 p) :
lpNorm (∑ is, f i) p μ is, lpNorm (f i) p μ
theorem MeasureTheory.lpNorm_expect_le {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [Module ℚ≥0 E] [NormedSpace E] {ι : Type u_3} {s : Finset ι} {f : ιαE} (hf : is, MemLp (f i) p μ) (hp : 1 p) :
lpNorm (s.expect fun (i : ι) => f i) p μ s.expect fun (i : ι) => lpNorm (f i) p μ
theorem MeasureTheory.lpNorm_mono_real {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} {g : α} (hg : MemLp g p μ) (h : ∀ (x : α), f x g x) :
lpNorm f p μ lpNorm g p μ
theorem MeasureTheory.lpNorm_smul_measure_of_ne_zero {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} {c : NNReal} (hc : c 0) :
lpNorm f p (c μ) = c ^ p.toReal⁻¹ lpNorm f p μ
theorem MeasureTheory.lpNorm_smul_measure_of_ne_top {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (hp : p ) {f : αE} (c : NNReal) :
lpNorm f p (c μ) = c ^ p.toReal⁻¹ lpNorm f p μ
@[simp]
theorem MeasureTheory.lpNorm_conj {α : Type u_1} {m : MeasurableSpace α} {K : Type u_3} [RCLike K] (f : αK) (p : ENNReal) (μ : Measure α) :
lpNorm ((starRingEnd (αK)) f) p μ = lpNorm f p μ