Real-valued Lᵖ norm #
This file proves theorems about MeasureTheory.lpNorm,
a real-valued version of MeasureTheory.eLpNorm.
theorem
MeasureTheory.toReal_eLpNorm
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{f : α → E}
(hf : AEStronglyMeasurable f μ)
:
theorem
MeasureTheory.ofReal_lpNorm
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{f : α → E}
(hf : MemLp f p μ)
:
@[simp]
theorem
MeasureTheory.lpNorm_of_not_aestronglyMeasurable
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{f : α → E}
(hf : ¬AEStronglyMeasurable f μ)
:
@[simp]
theorem
MeasureTheory.lpNorm_of_not_memLp
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{f : α → E}
(hf' : ¬MemLp f p μ)
:
@[simp]
theorem
MeasureTheory.lpNorm_nonneg
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{f : α → E}
:
theorem
MeasureTheory.lpNorm_nnreal_eq_integral_norm_rpow
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
[NormedAddCommGroup E]
{f : α → E}
{p : NNReal}
(hp : p ≠ 0)
(hf : AEStronglyMeasurable f μ)
:
theorem
MeasureTheory.lpNorm_one_eq_integral_norm
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
[NormedAddCommGroup E]
{f : α → E}
(hf : AEStronglyMeasurable f μ)
:
@[simp]
theorem
MeasureTheory.lpNorm_exponent_zero
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
[NormedAddCommGroup E]
(f : α → E)
:
@[simp]
theorem
MeasureTheory.lpNorm_measure_zero
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
[NormedAddCommGroup E]
(f : α → E)
:
theorem
MeasureTheory.lpNorm_exponent_top_eq_essSup
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
[NormedAddCommGroup E]
{f : α → E}
(hf : MemLp f ⊤ μ)
:
@[simp]
theorem
MeasureTheory.lpNorm_zero
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
[NormedAddCommGroup E]
(p : ENNReal)
(μ : Measure α)
:
@[simp]
theorem
MeasureTheory.lpNorm_fun_zero
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
[NormedAddCommGroup E]
(p : ENNReal)
(μ : Measure α)
:
@[simp]
theorem
MeasureTheory.lpNorm_eq_zero
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{f : α → E}
(hf : MemLp f p μ)
(hp : p ≠ 0)
:
@[simp]
theorem
MeasureTheory.lpNorm_of_isEmpty
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
[NormedAddCommGroup E]
[IsEmpty α]
(f : α → E)
(p : ENNReal)
:
@[simp]
theorem
MeasureTheory.lpNorm_neg
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
[NormedAddCommGroup E]
(f : α → E)
(p : ENNReal)
(μ : Measure α)
:
@[simp]
theorem
MeasureTheory.lpNorm_fun_neg
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
[NormedAddCommGroup E]
(f : α → E)
(p : ENNReal)
(μ : Measure α)
:
theorem
MeasureTheory.lpNorm_sub_comm
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
[NormedAddCommGroup E]
(f g : α → E)
(p : ENNReal)
(μ : Measure α)
:
@[simp]
theorem
MeasureTheory.lpNorm_norm
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
[NormedAddCommGroup E]
{f : α → E}
(hf : AEStronglyMeasurable f μ)
(p : ENNReal)
:
@[simp]
theorem
MeasureTheory.lpNorm_abs
{α : Type u_1}
{m : MeasurableSpace α}
{μ : Measure α}
{f : α → ℝ}
(hf : AEStronglyMeasurable f μ)
(p : ENNReal)
:
@[simp]
theorem
MeasureTheory.lpNorm_fun_abs
{α : Type u_1}
{m : MeasurableSpace α}
{μ : Measure α}
{f : α → ℝ}
(hf : AEStronglyMeasurable f μ)
(p : ENNReal)
:
@[simp]
@[simp]
theorem
MeasureTheory.lpNorm_const_smul
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
[NormedAddCommGroup E]
{𝕜 : Type u_3}
[NormedField 𝕜]
[Module 𝕜 E]
[NormSMulClass 𝕜 E]
(c : 𝕜)
(f : α → E)
(μ : Measure α)
:
theorem
MeasureTheory.lpNorm_nsmul
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(n : ℕ)
(f : α → E)
(μ : Measure α)
:
theorem
MeasureTheory.lpNorm_natCast_mul
{α : Type u_1}
{m : MeasurableSpace α}
{𝕜 : Type u_3}
[NormedField 𝕜]
[NormedSpace ℝ 𝕜]
(n : ℕ)
(f : α → 𝕜)
(p : ENNReal)
(μ : Measure α)
:
theorem
MeasureTheory.lpNorm_fun_natCast_mul
{α : Type u_1}
{m : MeasurableSpace α}
{𝕜 : Type u_3}
[NormedField 𝕜]
[NormedSpace ℝ 𝕜]
(n : ℕ)
(f : α → 𝕜)
(p : ENNReal)
(μ : Measure α)
:
theorem
MeasureTheory.lpNorm_mul_natCast
{α : Type u_1}
{m : MeasurableSpace α}
{𝕜 : Type u_3}
[NormedField 𝕜]
[NormedSpace ℝ 𝕜]
(f : α → 𝕜)
(n : ℕ)
(p : ENNReal)
(μ : Measure α)
:
theorem
MeasureTheory.lpNorm_fun_mul_natCast
{α : Type u_1}
{m : MeasurableSpace α}
{𝕜 : Type u_3}
[NormedField 𝕜]
[NormedSpace ℝ 𝕜]
(f : α → 𝕜)
(n : ℕ)
(p : ENNReal)
(μ : Measure α)
:
theorem
MeasureTheory.lpNorm_div_natCast
{α : Type u_1}
{m : MeasurableSpace α}
{𝕜 : Type u_3}
[NormedField 𝕜]
[NormedSpace ℝ 𝕜]
[CharZero 𝕜]
{n : ℕ}
(hn : n ≠ 0)
(f : α → 𝕜)
(p : ENNReal)
(μ : Measure α)
:
theorem
MeasureTheory.lpNorm_fun_div_natCast
{α : Type u_1}
{m : MeasurableSpace α}
{𝕜 : Type u_3}
[NormedField 𝕜]
[NormedSpace ℝ 𝕜]
[CharZero 𝕜]
{n : ℕ}
(hn : n ≠ 0)
(f : α → 𝕜)
(p : ENNReal)
(μ : Measure α)
:
theorem
MeasureTheory.lpNorm_add_le
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{f g : α → E}
(hf : MemLp f p μ)
(hp : 1 ≤ p)
:
theorem
MeasureTheory.lpNorm_add_le'
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{f g : α → E}
(hg : MemLp g p μ)
(hp : 1 ≤ p)
:
theorem
MeasureTheory.lpNorm_sub_le
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{f g : α → E}
(hf : MemLp f p μ)
(hp : 1 ≤ p)
:
theorem
MeasureTheory.lpNorm_le_lpNorm_add_lpNorm_sub'
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{f g : α → E}
(hg : MemLp g p μ)
(hp : 1 ≤ p)
:
theorem
MeasureTheory.lpNorm_le_lpNorm_add_lpNorm_sub
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{f g : α → E}
(hg : MemLp g p μ)
(hp : 1 ≤ p)
:
theorem
MeasureTheory.lpNorm_le_add_lpNorm_add
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{f g : α → E}
(hg : MemLp g p μ)
(hp : 1 ≤ p)
:
theorem
MeasureTheory.lpNorm_sum_le
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{ι : Type u_3}
{s : Finset ι}
{f : ι → α → E}
(hf : ∀ i ∈ s, MemLp (f i) p μ)
(hp : 1 ≤ p)
:
theorem
MeasureTheory.lpNorm_expect_le
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
[Module ℚ≥0 E]
[NormedSpace ℝ E]
{ι : Type u_3}
{s : Finset ι}
{f : ι → α → E}
(hf : ∀ i ∈ s, MemLp (f i) p μ)
(hp : 1 ≤ p)
:
theorem
MeasureTheory.lpNorm_mono_real
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{f : α → E}
{g : α → ℝ}
(hg : MemLp g p μ)
(h : ∀ (x : α), ‖f x‖ ≤ g x)
:
@[simp]
theorem
MeasureTheory.lpNorm_conj
{α : Type u_1}
{m : MeasurableSpace α}
{K : Type u_3}
[RCLike K]
(f : α → K)
(p : ENNReal)
(μ : Measure α)
: