Documentation

Mathlib.NumberTheory.ClassNumber.AdmissibleAbs

Admissible absolute value on the integers #

This file defines an admissible absolute value AbsoluteValue.absIsAdmissible which we use to show the class number of the ring of integers of a number field is finite.

Main results #

theorem AbsoluteValue.exists_partition_int (n : ā„•) {ε : ā„} (hε : 0 < ε) {b : ℤ} (hb : b ≠ 0) (A : Fin n → ℤ) :
∃ (t : Fin n → Fin ⌈1 / ĪµāŒ‰ā‚Š), āˆ€ (iā‚€ i₁ : Fin n), t iā‚€ = t i₁ → ↑|A i₁ % b - A iā‚€ % b| < |b| • ε

We can partition a finite family into partition_card ε sets, such that the remainders in each set are close together.

abs : ℤ → ℤ is an admissible absolute value.

Equations
    Instances For