Documentation

Mathlib.NumberTheory.NumberField.House

House of an algebraic number #

This file defines the house of an algebraic number Ξ±, which is the largest of the modulus of its conjugates.

References #

Tags #

number field, algebraic number, house

def NumberField.house {K : Type u_1} [Field K] [NumberField K] (Ξ± : K) :

The house of an algebraic number as the norm of its image by the canonical embedding.

Equations
    Instances For
      theorem NumberField.house_eq_sup' {K : Type u_1} [Field K] [NumberField K] (Ξ± : K) :
      house Ξ± = ↑(Finset.univ.sup' β‹― fun (Ο† : K β†’+* β„‚) => β€–Ο† Ξ±β€–β‚Š)

      The house is the largest of the modulus of the conjugates of an algebraic number.

      theorem NumberField.house_sum_le_sum_house {K : Type u_1} [Field K] [NumberField K] {ΞΉ : Type u_2} (s : Finset ΞΉ) (Ξ± : ΞΉ β†’ K) :
      house (βˆ‘ i ∈ s, Ξ± i) ≀ βˆ‘ i ∈ s, house (Ξ± i)
      theorem NumberField.house_mul_le {K : Type u_1} [Field K] [NumberField K] (Ξ± Ξ² : K) :
      house (Ξ± * Ξ²) ≀ house Ξ± * house Ξ²
      theorem NumberField.house_prod_le {K : Type u_1} [Field K] [NumberField K] (s : Finset K) :
      house (∏ x ∈ s, x) ≀ ∏ x ∈ s, house x
      theorem NumberField.house_add_le {K : Type u_1} [Field K] [NumberField K] (Ξ± Ξ² : K) :
      house (Ξ± + Ξ²) ≀ house Ξ± + house Ξ²
      theorem NumberField.house_pow_le {K : Type u_1} [Field K] [NumberField K] (Ξ± : K) (i : β„•) :
      house (Ξ± ^ i) ≀ house Ξ± ^ i
      theorem NumberField.house_nat_mul {K : Type u_1} [Field K] [NumberField K] (Ξ± : K) (c : β„•) :
      house (↑c * Ξ±) = ↑c * house Ξ±
      @[simp]
      theorem NumberField.house_intCast {K : Type u_1} [Field K] [NumberField K] (x : β„€) :
      house ↑x = ↑|x|
      theorem NumberField.exists_conjugate_one_le_norm {K : Type u_1} [Field K] [NumberField K] {Ξ± : RingOfIntegers K} (hΞ±0 : Ξ± β‰  0) :
      βˆƒ (Οƒ : K β†’+* β„‚), 1 ≀ β€–Οƒ ↑α‖

      Let Ξ± be a non-zero algebraic integer. Then Ξ± has a conjugate Οƒ Ξ± with β€–Οƒ Ξ±β€– β‰₯ 1.

      theorem NumberField.one_le_house_of_isIntegral {K : Type u_1} [Field K] [NumberField K] {Ξ± : K} (hΞ± : IsIntegral β„€ Ξ±) (hΞ±0 : Ξ± β‰  0) :
      1 ≀ house Ξ±
      theorem NumberField.house.exists_ne_zero_int_vec_house_le (K : Type u_1) [Field K] [NumberField K] {Ξ± : Type u_2} {Ξ² : Type u_3} (a : Matrix Ξ± Ξ² (RingOfIntegers K)) (ha : a β‰  0) {p q : β„•} (h0p : 0 < p) (hpq : p < q) [Fintype Ξ²] (cardΞ² : Fintype.card Ξ² = q) {A : ℝ} (habs : βˆ€ (k : Ξ±) (l : Ξ²), house ((algebraMap (RingOfIntegers K) K) (a k l)) ≀ A) [DecidableEq (K β†’+* β„‚)] [Fintype Ξ±] (cardΞ± : Fintype.card Ξ± = p) :
      βˆƒ (ΞΎ : Ξ² β†’ RingOfIntegers K), ΞΎ β‰  0 ∧ a.mulVec ΞΎ = 0 ∧ βˆ€ (l : Ξ²), house ↑(ΞΎ l) ≀ NumberField.house.cβ‚βœ K * (NumberField.house.cβ‚βœΒΉ K * ↑q * A) ^ (↑p / (↑q - ↑p))

      There exists a "small" non-zero algebraic integral solution of an non-trivial underdetermined system of linear equations with algebraic integer coefficients.