Documentation

Mathlib.Order.CompleteLattice.Chain

Hausdorff's maximality principle #

This file proves Hausdorff's maximality principle.

Main declarations #

Notes #

Originally ported from Isabelle/HOL. The original file was written by Jacques D. Fleuriot, Tobias Nipkow, Christian Sternagel.

inductive ChainClosure {α : Type u_1} (r : α → α → Prop) :
Set α → Prop

Predicate for whether a set is reachable from āˆ… using SuccChain and ā‹ƒā‚€.

Instances For
    def maxChain {α : Type u_1} (r : α → α → Prop) :
    Set α

    An explicit maximal chain. maxChain is taken to be the union of all sets in ChainClosure.

    Equations
      Instances For
        theorem chainClosure_empty {α : Type u_1} {r : α → α → Prop} :
        theorem chainClosure_maxChain {α : Type u_1} {r : α → α → Prop} :
        theorem ChainClosure.total {α : Type u_1} {r : α → α → Prop} {c₁ cā‚‚ : Set α} (hc₁ : ChainClosure r c₁) (hcā‚‚ : ChainClosure r cā‚‚) :
        c₁ āŠ† cā‚‚ ∨ cā‚‚ āŠ† c₁
        theorem ChainClosure.succ_fixpoint {α : Type u_1} {r : α → α → Prop} {c₁ cā‚‚ : Set α} (hc₁ : ChainClosure r c₁) (hcā‚‚ : ChainClosure r cā‚‚) (hc : SuccChain r cā‚‚ = cā‚‚) :
        c₁ āŠ† cā‚‚
        theorem ChainClosure.succ_fixpoint_iff {α : Type u_1} {r : α → α → Prop} {c : Set α} (hc : ChainClosure r c) :
        theorem ChainClosure.isChain {α : Type u_1} {r : α → α → Prop} {c : Set α} (hc : ChainClosure r c) :
        theorem maxChain_spec {α : Type u_1} {r : α → α → Prop} :

        Hausdorff's maximality principle

        There exists a maximal totally ordered set of α. Note that we do not require α to be partially ordered by r.