Hausdorff's maximality principle #
This file proves Hausdorff's maximality principle.
Main declarations #
maxChain_spec: Hausdorff's Maximality Principle.
Notes #
Originally ported from Isabelle/HOL. The original file was written by Jacques D. Fleuriot, Tobias Nipkow, Christian Sternagel.
Predicate for whether a set is reachable from ā
using SuccChain and āā.
- succ {α : Type u_1} {r : α ā α ā Prop} {s : Set α} : ChainClosure r s ā ChainClosure r (SuccChain r s)
- union {α : Type u_1} {r : α ā α ā Prop} {s : Set (Set α)} : (ā a ā s, ChainClosure r a) ā ChainClosure r (āā s)
Instances For
An explicit maximal chain. maxChain is taken to be the union of all sets in ChainClosure.
Equations
Instances For
theorem
ChainClosure.total
{α : Type u_1}
{r : α ā α ā Prop}
{cā cā : Set α}
(hcā : ChainClosure r cā)
(hcā : ChainClosure r cā)
:
theorem
ChainClosure.succ_fixpoint
{α : Type u_1}
{r : α ā α ā Prop}
{cā cā : Set α}
(hcā : ChainClosure r cā)
(hcā : ChainClosure r cā)
(hc : SuccChain r cā = cā)
:
theorem
ChainClosure.succ_fixpoint_iff
{α : Type u_1}
{r : α ā α ā Prop}
{c : Set α}
(hc : ChainClosure r c)
:
theorem
ChainClosure.isChain
{α : Type u_1}
{r : α ā α ā Prop}
{c : Set α}
(hc : ChainClosure r c)
:
IsChain r c
Hausdorff's maximality principle
There exists a maximal totally ordered set of α.
Note that we do not require α to be partially ordered by r.