Results relating filters to finiteness #
This file proves that finitely many conditions eventually hold if each of them eventually holds.
theorem
Finset.iInter_mem_sets
{α : Type u}
{f : Filter α}
{β : Type v}
{s : β → Set α}
(is : Finset β)
:
Alias of Filter.biInter_finset_mem.
Lattice equations #
theorem
Pairwise.exists_mem_filter_of_disjoint
{α : Type u}
{ι : Type u_2}
[Finite ι]
{l : ι → Filter α}
(hd : Pairwise (Function.onFun Disjoint l))
:
theorem
Set.PairwiseDisjoint.exists_mem_filter
{α : Type u}
{ι : Type u_2}
{l : ι → Filter α}
{t : Set ι}
(hd : t.PairwiseDisjoint l)
(ht : t.Finite)
:
∃ (s : ι → Set α), (∀ (i : ι), s i ∈ l i) ∧ t.PairwiseDisjoint s
principal equations #
@[simp]
@[simp]
A special case of iInf_principal that is safe to mark simp.
Eventually and Frequently #
Relation “eventually equal” #
theorem
Filter.EventuallyLE.biUnion
{α : Type u}
{l : Filter α}
{ι : Type u_2}
{s : Set ι}
(hs : s.Finite)
{f g : ι → Set α}
(hle : ∀ i ∈ s, f i ≤ᶠ[l] g i)
:
Alias of Set.Finite.eventuallyLE_iUnion.
theorem
Filter.EventuallyEq.biUnion
{α : Type u}
{l : Filter α}
{ι : Type u_2}
{s : Set ι}
(hs : s.Finite)
{f g : ι → Set α}
(heq : ∀ i ∈ s, f i =ᶠ[l] g i)
:
Alias of Set.Finite.eventuallyEq_iUnion.
theorem
Filter.EventuallyLE.biInter
{α : Type u}
{l : Filter α}
{ι : Type u_2}
{s : Set ι}
(hs : s.Finite)
{f g : ι → Set α}
(hle : ∀ i ∈ s, f i ≤ᶠ[l] g i)
:
Alias of Set.Finite.eventuallyLE_iInter.
theorem
Filter.EventuallyEq.biInter
{α : Type u}
{l : Filter α}
{ι : Type u_2}
{s : Set ι}
(hs : s.Finite)
{f g : ι → Set α}
(heq : ∀ i ∈ s, f i =ᶠ[l] g i)
:
Alias of Set.Finite.eventuallyEq_iInter.