Finite sets of an ordered type #
This file defines the isomorphism between ordered embeddings into a linearly ordered type and the finite sets of that type.
Definitions #
ofFinEmbEquivis the equivalence betweenFin n âŠo IandSet.powersetCard I nwhenIis a linearly ordered type.
The isomorphism of OrderEmbeddings from Fin n into I with Set.powersetCard I n
when I is linearly ordered.
Equations
Instances For
theorem
Set.powersetCard.ofFinEmbEquiv_apply
{n : â}
{I : Type u_1}
[LinearOrder I]
(f : Fin n âŠo I)
:
theorem
Set.powersetCard.ofFinEmbEquiv_symm_apply
{n : â}
{I : Type u_1}
[LinearOrder I]
(s : â(powersetCard I n))
:
@[simp]
theorem
Set.powersetCard.mem_ofFinEmbEquiv_iff_mem_range
{n : â}
{I : Type u_1}
[LinearOrder I]
(f : Fin n âŠo I)
(i : I)
:
theorem
Set.powersetCard.mem_range_ofFinEmbEquiv_symm_iff_mem
{n : â}
{I : Type u_1}
[LinearOrder I]
(s : â(powersetCard I n))
(i : I)
: