Documentation

Mathlib.Probability.Distributions.Cauchy

Cauchy Distribution over ℝ #

Define the Cauchy distribution with location parameter x₀ and scale parameter γ.

Note that we use "location" and "scale" to refer to these parameters in theorem names.

Main definition #

noncomputable def Probability.cauchyPDFReal (x₀ : ) (γ : NNReal) (x : ) :

The pdf of the cauchy distribution depending on its location x₀ and scale γ parameters.

Equations
    Instances For
      theorem Probability.cauchyPDFReal_def (x₀ : ) (γ : NNReal) (x : ) :
      cauchyPDFReal x₀ γ x = Real.pi⁻¹ * γ * ((x - x₀) ^ 2 + γ ^ 2)⁻¹
      theorem Probability.cauchyPDFReal_def' (x₀ : ) (γ : NNReal) (x : ) :
      cauchyPDFReal x₀ γ x = Real.pi⁻¹ * γ⁻¹ * (1 + ((x - x₀) / γ) ^ 2)⁻¹
      noncomputable def Probability.cauchyPDF (x₀ : ) (γ : NNReal) (x : ) :

      The pdf of the gamma distribution, as a function valued in ℝ≥0∞.

      Equations
        Instances For
          theorem Probability.cauchyPDF_def (x₀ : ) (γ : NNReal) (x : ) :
          cauchyPDF x₀ γ x = ENNReal.ofReal (cauchyPDFReal x₀ γ x)
          theorem Probability.cauchyPDF_pos (x₀ : ) {γ : NNReal} ( : γ 0) (x : ) :
          0 < cauchyPDFReal x₀ γ x

          cauchyPDFReal is positive for γ > 0.

          theorem Probability.integral_cauchyPDFReal (x₀ : ) {γ : NNReal} ( : γ 0) :
          (x : ), cauchyPDFReal x₀ γ x = 1
          @[simp]
          theorem Probability.lintegral_cauchyPDF_eq_one (x₀ : ) {γ : NNReal} ( : γ 0) :
          ∫⁻ (x : ), cauchyPDF x₀ γ x = 1

          The pdf of the cauchy distribution integrates to 1.

          noncomputable def Probability.cauchyMeasure (x₀ : ) (γ : NNReal) :

          A Cauchy distribution on with location parameter x₀ and scale parameter γ.

          Equations
            Instances For