Documentation

Mathlib.Probability.Moments.CovarianceBilinDual

Covariance in Banach spaces #

We define the covariance of a finite measure in a Banach space E, as a continuous bilinear form on Dual ℝ E.

Main definitions #

Let μ be a finite measure on a normed space E with the Borel σ-algebra. We then define

Main statements #

Implementation notes #

The hypothesis that μ has a second moment is written as MemLp id 2 μ in the code.

noncomputable def StrongDual.toLpₗ {E : Type u_1} [NormedAddCommGroup E] {mE : MeasurableSpace E} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] (μ : MeasureTheory.Measure E) (p : ENNReal) :
StrongDual 𝕜 E →ₗ[𝕜] (MeasureTheory.Lp 𝕜 p μ)

Linear map from the dual to Lp equal to MemLp.toLp if MemLp id p μ and to 0 otherwise.

Equations
    Instances For
      @[simp]
      theorem StrongDual.toLpₗ_apply {E : Type u_1} [NormedAddCommGroup E] {mE : MeasurableSpace E} {μ : MeasureTheory.Measure E} {p : ENNReal} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] (h_Lp : MeasureTheory.MemLp id p μ) (L : StrongDual 𝕜 E) :
      @[simp]
      theorem StrongDual.toLpₗ_of_not_memLp {E : Type u_1} [NormedAddCommGroup E] {mE : MeasurableSpace E} {μ : MeasureTheory.Measure E} {p : ENNReal} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] (h_Lp : ¬MeasureTheory.MemLp id p μ) (L : StrongDual 𝕜 E) :
      (toLpₗ μ p) L = 0
      noncomputable def StrongDual.toLp {E : Type u_1} [NormedAddCommGroup E] {mE : MeasurableSpace E} {𝕜 : Type u_2} [RCLike 𝕜] [NormedSpace 𝕜 E] [OpensMeasurableSpace E] (μ : MeasureTheory.Measure E) (p : ENNReal) [Fact (1 p)] :
      StrongDual 𝕜 E →L[𝕜] (MeasureTheory.Lp 𝕜 p μ)

      Continuous linear map from the dual to Lp equal to MemLp.toLp if MemLp id p μ and to 0 otherwise.

      Equations
        Instances For
          @[simp]
          theorem StrongDual.toLp_apply {E : Type u_1} [NormedAddCommGroup E] {mE : MeasurableSpace E} {μ : MeasureTheory.Measure E} {p : ENNReal} {𝕜 : Type u_2} [RCLike 𝕜] [NormedSpace 𝕜 E] [OpensMeasurableSpace E] [Fact (1 p)] (h_Lp : MeasureTheory.MemLp id p μ) (L : StrongDual 𝕜 E) :
          (toLp μ p) L = MeasureTheory.MemLp.toLp L
          @[simp]
          theorem StrongDual.toLp_of_not_memLp {E : Type u_1} [NormedAddCommGroup E] {mE : MeasurableSpace E} {μ : MeasureTheory.Measure E} {p : ENNReal} {𝕜 : Type u_2} [RCLike 𝕜] [NormedSpace 𝕜 E] [OpensMeasurableSpace E] [Fact (1 p)] (h_Lp : ¬MeasureTheory.MemLp id p μ) (L : StrongDual 𝕜 E) :
          (toLp μ p) L = 0

          Continuous bilinear form with value ∫ x, L₁ x * L₂ x ∂μ on (L₁, L₂). This is equal to the covariance only if μ is centered.

          Equations
            Instances For
              @[deprecated ProbabilityTheory.uncenteredCovarianceBilinDual (since := "2025-10-10")]

              Alias of ProbabilityTheory.uncenteredCovarianceBilinDual.


              Continuous bilinear form with value ∫ x, L₁ x * L₂ x ∂μ on (L₁, L₂). This is equal to the covariance only if μ is centered.

              Equations
                Instances For
                  @[deprecated ProbabilityTheory.uncenteredCovarianceBilinDual_apply (since := "2025-10-10")]

                  Alias of ProbabilityTheory.uncenteredCovarianceBilinDual_apply.

                  @[deprecated ProbabilityTheory.uncenteredCovarianceBilinDual_of_not_memLp (since := "2025-10-10")]

                  Alias of ProbabilityTheory.uncenteredCovarianceBilinDual_of_not_memLp.

                  @[deprecated ProbabilityTheory.uncenteredCovarianceBilinDual_zero (since := "2025-10-10")]

                  Alias of ProbabilityTheory.uncenteredCovarianceBilinDual_zero.

                  @[deprecated ProbabilityTheory.norm_uncenteredCovarianceBilinDual_le (since := "2025-10-10")]

                  Alias of ProbabilityTheory.norm_uncenteredCovarianceBilinDual_le.

                  Continuous bilinear form with value ∫ x, (L₁ x - μ[L₁]) * (L₂ x - μ[L₂]) ∂μ on (L₁, L₂) if MemLp id 2 μ. If not, we set it to zero.

                  Equations
                    Instances For
                      theorem MeasureTheory.memLp_id_of_self_sub_integral {E : Type u_1} [NormedAddCommGroup E] {mE : MeasurableSpace E} {μ : Measure E} [NormedSpace E] {p : ENNReal} (h_Lp : MemLp (fun (x : E) => x - (y : E), y μ) p μ) :
                      MemLp id p μ
                      theorem ProbabilityTheory.covarianceBilinDual_of_not_memLp' {E : Type u_1} [NormedAddCommGroup E] {mE : MeasurableSpace E} {μ : MeasureTheory.Measure E} [NormedSpace E] [BorelSpace E] (h : ¬MeasureTheory.MemLp (fun (x : E) => x - (y : E), y μ) 2 μ) (L₁ L₂ : StrongDual E) :
                      ((covarianceBilinDual μ) L₁) L₂ = 0
                      theorem ProbabilityTheory.covarianceBilinDual_apply {E : Type u_1} [NormedAddCommGroup E] {mE : MeasurableSpace E} {μ : MeasureTheory.Measure E} [NormedSpace E] [BorelSpace E] [CompleteSpace E] [MeasureTheory.IsFiniteMeasure μ] (h : MeasureTheory.MemLp id 2 μ) (L₁ L₂ : StrongDual E) :
                      ((covarianceBilinDual μ) L₁) L₂ = (x : E), (L₁ x - (x : E), L₁ x μ) * (L₂ x - (x : E), L₂ x μ) μ
                      theorem ProbabilityTheory.covarianceBilinDual_apply' {E : Type u_1} [NormedAddCommGroup E] {mE : MeasurableSpace E} {μ : MeasureTheory.Measure E} [NormedSpace E] [BorelSpace E] [CompleteSpace E] [MeasureTheory.IsFiniteMeasure μ] (h : MeasureTheory.MemLp id 2 μ) (L₁ L₂ : StrongDual E) :
                      ((covarianceBilinDual μ) L₁) L₂ = (x : E), L₁ (x - (x : E), id x μ) * L₂ (x - (x : E), id x μ) μ