Documentation

Mathlib.RingTheory.AdicCompletion.RingHom

Lift of ring homomorphisms to adic completions #

Let R, S be rings, I be an ideal of S. In this file we prove that a compatible family of ring homomorphisms from a ring R to S ⧸ I ^ n can be lifted to a ring homomorphism R →+* AdicCompletion I S. If S is I-adically complete, then this compatible family of ring homomorphisms can be lifted to a ring homomorphism R →+* S.

Main definitions #

noncomputable def IsAdicComplete.liftRingHom {R : Type u_1} {S : Type u_2} [NonAssocSemiring R] [CommRing S] (I : Ideal S) [IsAdicComplete I S] (f : (n : ) → R →+* S I ^ n) (hf : ∀ {m n : } (hle : m n), (Ideal.Quotient.factorPow I hle).comp (f n) = f m) :
R →+* S

Universal property of IsAdicComplete for rings. The lift ring map lift I f hf : R →+* S of a sequence of compatible ring maps f n : R →+* S ⧸ (I ^ n).

Equations
    Instances For
      @[simp]
      theorem IsAdicComplete.of_liftRingHom {R : Type u_1} {S : Type u_2} [NonAssocSemiring R] [CommRing S] (I : Ideal S) [IsAdicComplete I S] (f : (n : ) → R →+* S I ^ n) (hf : ∀ {m n : } (hle : m n), (Ideal.Quotient.factorPow I hle).comp (f n) = f m) (x : R) :
      @[simp]
      theorem IsAdicComplete.ofAlgEquiv_comp_liftRingHom {R : Type u_1} {S : Type u_2} [NonAssocSemiring R] [CommRing S] (I : Ideal S) [IsAdicComplete I S] (f : (n : ) → R →+* S I ^ n) (hf : ∀ {m n : } (hle : m n), (Ideal.Quotient.factorPow I hle).comp (f n) = f m) :
      @[simp]
      theorem IsAdicComplete.mk_liftRingHom {R : Type u_1} {S : Type u_2} [NonAssocSemiring R] [CommRing S] (I : Ideal S) [IsAdicComplete I S] (f : (n : ) → R →+* S I ^ n) (hf : ∀ {m n : } (hle : m n), (Ideal.Quotient.factorPow I hle).comp (f n) = f m) (n : ) (x : R) :
      (Ideal.Quotient.mk (I ^ n)) ((liftRingHom I f ) x) = (f n) x

      The composition of lift linear map lift I f hf : R →+* S with the canonical projection S →+* S ⧸ (I ^ n) is f n .

      @[simp]
      theorem IsAdicComplete.mk_comp_liftRingHom {R : Type u_1} {S : Type u_2} [NonAssocSemiring R] [CommRing S] (I : Ideal S) [IsAdicComplete I S] (f : (n : ) → R →+* S I ^ n) (hf : ∀ {m n : } (hle : m n), (Ideal.Quotient.factorPow I hle).comp (f n) = f m) (n : ) :
      (Ideal.Quotient.mk (I ^ n)).comp (liftRingHom I f ) = f n
      theorem IsAdicComplete.eq_liftRingHom {R : Type u_1} {S : Type u_2} [NonAssocSemiring R] [CommRing S] (I : Ideal S) [IsAdicComplete I S] (f : (n : ) → R →+* S I ^ n) (hf : ∀ {m n : } (hle : m n), (Ideal.Quotient.factorPow I hle).comp (f n) = f m) (F : R →+* S) (hF : ∀ (n : ), (Ideal.Quotient.mk (I ^ n)).comp F = f n) :
      F = liftRingHom I f

      Uniqueness of the lift. Given a compatible family of linear maps f n : R →ₗ[R] S ⧸ (I ^ n). If F : R →+* S makes the following diagram commute

        R
        | \
       F|  \ f n
        |   \
        v    v
        S --> S ⧸ (I ^ n)
      

      Then it is the map IsAdicComplete.lift.

      noncomputable def IsAdicComplete.liftAlgHom {R : Type u_3} {S : Type u_4} {A : Type u_5} [CommRing R] [CommRing S] [Algebra R S] (I : Ideal S) [IsAdicComplete I S] [CommRing A] [Algebra R A] (f : (n : ) → A →ₐ[R] S I ^ n) (hf : ∀ {m n : } (hle : m n), (Ideal.Quotient.factorₐ R ).comp (f n) = f m) :

      AlgHom version of IsAdicCompletion.liftRingHom.

      Equations
        Instances For
          @[simp]
          theorem IsAdicComplete.mk_liftAlgHom {R : Type u_3} {S : Type u_4} {A : Type u_5} [CommRing R] [CommRing S] [Algebra R S] (I : Ideal S) [IsAdicComplete I S] [CommRing A] [Algebra R A] (f : (n : ) → A →ₐ[R] S I ^ n) (hf : ∀ {m n : } (hle : m n), (Ideal.Quotient.factorₐ R ).comp (f n) = f m) (n : ) (x : A) :
          (Ideal.Quotient.mk (I ^ n)) ((liftAlgHom I f ) x) = (f n) x
          @[simp]
          theorem IsAdicComplete.mkₐ_comp_liftAlgHom {R : Type u_3} {S : Type u_4} {A : Type u_5} [CommRing R] [CommRing S] [Algebra R S] (I : Ideal S) [IsAdicComplete I S] [CommRing A] [Algebra R A] (f : (n : ) → A →ₐ[R] S I ^ n) (hf : ∀ {m n : } (hle : m n), (Ideal.Quotient.factorₐ R ).comp (f n) = f m) (n : ) :
          (Ideal.Quotient.mkₐ R (I ^ n)).comp (liftAlgHom I f ) = f n
          theorem IsAdicComplete.algHom_ext {R : Type u_3} {S : Type u_4} {A : Type u_5} [CommRing R] [CommRing S] [Algebra R S] (I : Ideal S) [IsAdicComplete I S] [CommRing A] [Algebra R A] {f g : A →ₐ[R] S} (H : ∀ (n : ), (Ideal.Quotient.mkₐ R (I ^ n)).comp f = (Ideal.Quotient.mkₐ R (I ^ n)).comp g) :
          f = g
          theorem IsAdicComplete.StrictMono.factorPow_comp_eq_of_factorPow_comp_succ_eq' {R : Type u_1} {S : Type u_2} [NonAssocSemiring R] [CommRing S] {I : Ideal S} {a : } (ha : StrictMono a) (f : (n : ) → R →+* S I ^ a n) (hf : ∀ {m : }, (Ideal.Quotient.factorPow I ).comp (f (m + 1)) = f m) {m n : } (hle : m n) :
          (Ideal.Quotient.factorPow I ).comp (f n) = f m

          RingHom variant of IsAdicComplete.StrictMono.factorPow_comp_eq_of_factorPow_comp_succ_eq.

          noncomputable def IsAdicComplete.StrictMono.liftRingHom {R : Type u_1} {S : Type u_2} [NonAssocSemiring R] [CommRing S] (I : Ideal S) {a : } (ha : StrictMono a) (f : (n : ) → R →+* S I ^ a n) (hf : ∀ {m : }, (Ideal.Quotient.factorPow I ).comp (f (m + 1)) = f m) [IsAdicComplete I S] :
          R →+* S

          A variant of IsAdicComplete.liftRingHom. Only takes f n : R →+* S ⧸ I ^ (a n) from a strictly increasing sequence a n.

          Equations
            Instances For
              @[simp]
              theorem IsAdicComplete.StrictMono.mk_liftRingHom {R : Type u_1} {S : Type u_2} [NonAssocSemiring R] [CommRing S] (I : Ideal S) {a : } (ha : StrictMono a) (f : (n : ) → R →+* S I ^ a n) (hf : ∀ {m : }, (Ideal.Quotient.factorPow I ).comp (f (m + 1)) = f m) [IsAdicComplete I S] {n : } (x : R) :
              (Ideal.Quotient.mk (I ^ a n)) ((liftRingHom I ha f ) x) = (f n) x
              @[simp]
              theorem IsAdicComplete.StrictMono.mk_comp_liftRingHom {R : Type u_1} {S : Type u_2} [NonAssocSemiring R] [CommRing S] (I : Ideal S) {a : } (ha : StrictMono a) (f : (n : ) → R →+* S I ^ a n) (hf : ∀ {m : }, (Ideal.Quotient.factorPow I ).comp (f (m + 1)) = f m) [IsAdicComplete I S] {n : } :
              (Ideal.Quotient.mk (I ^ a n)).comp (liftRingHom I ha f ) = f n
              theorem IsAdicComplete.StrictMono.eq_liftRingHom {R : Type u_1} {S : Type u_2} [NonAssocSemiring R] [CommRing S] (I : Ideal S) {a : } (ha : StrictMono a) (f : (n : ) → R →+* S I ^ a n) (hf : ∀ {m : }, (Ideal.Quotient.factorPow I ).comp (f (m + 1)) = f m) [IsAdicComplete I S] {F : R →+* S} (hF : ∀ (n : ), (Ideal.Quotient.mk (I ^ a n)).comp F = f n) :
              F = liftRingHom I ha f