Documentation

Mathlib.RingTheory.Bialgebra.MonoidAlgebra

The bialgebra structure on monoid algebras #

Given a monoid M, a commutative semiring R and an R-bialgebra A, this file collects results about the R-bialgebra instance on A[M] inherited from the corresponding structure on its coefficients, building upon results in Mathlib/RingTheory/Coalgebra/MonoidAlgebra.lean about the coalgebra structure.

Main definitions #

instance MonoidAlgebra.instBialgebra (R : Type u_1) (A : Type u_2) (M : Type u_3) [CommSemiring R] [Semiring A] [Bialgebra R A] [Monoid M] :
Equations
    noncomputable def AddMonoidAlgebra.mapDomainBialgHom (R : Type u_1) {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddMonoid M] [AddMonoid N] (f : M โ†’+ N) :

    If f : M โ†’ N is a monoid hom, then AddMonoidAlgebra.mapDomain f is a bialgebra hom between their additive monoid algebras.

    Equations
      Instances For
        noncomputable def MonoidAlgebra.mapDomainBialgHom (R : Type u_1) {M : Type u_3} {N : Type u_4} [CommSemiring R] [Monoid M] [Monoid N] (f : M โ†’* N) :

        If f : M โ†’ N is a monoid hom, then MonoidAlgebra.mapDomain f is a bialgebra hom between their monoid algebras.

        Equations
          Instances For
            @[simp]
            theorem AddMonoidAlgebra.mapDomainBialgHom_apply (R : Type u_1) {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddMonoid M] [AddMonoid N] (f : M โ†’+ N) (aโœ : AddMonoidAlgebra R M) :
            (mapDomainBialgHom R f) aโœ = mapDomain (โ‡‘f) aโœ
            @[simp]
            theorem MonoidAlgebra.mapDomainBialgHom_apply (R : Type u_1) {M : Type u_3} {N : Type u_4} [CommSemiring R] [Monoid M] [Monoid N] (f : M โ†’* N) (aโœ : MonoidAlgebra R M) :
            (mapDomainBialgHom R f) aโœ = mapDomain (โ‡‘f) aโœ
            @[simp]
            theorem MonoidAlgebra.mapDomainBialgHom_comp {R : Type u_1} {M : Type u_3} {N : Type u_4} {O : Type u_5} [CommSemiring R] [Monoid M] [Monoid N] [Monoid O] (f : N โ†’* O) (g : M โ†’* N) :
            @[simp]
            theorem AddMonoidAlgebra.mapDomainBialgHom_comp {R : Type u_1} {M : Type u_3} {N : Type u_4} {O : Type u_5} [CommSemiring R] [AddMonoid M] [AddMonoid N] [AddMonoid O] (f : N โ†’+ O) (g : M โ†’+ N) :
            theorem MonoidAlgebra.mapDomainBialgHom_mapDomainBialgHom {R : Type u_1} {M : Type u_3} {N : Type u_4} {O : Type u_5} [CommSemiring R] [Monoid M] [Monoid N] [Monoid O] (f : N โ†’* O) (g : M โ†’* N) (x : MonoidAlgebra R M) :