Documentation

Mathlib.RingTheory.Extension.Presentation.Core

Presentations on subrings #

In this file we establish the API for realising a presentation over a subring of R. We define a property HasCoeffs R₀ for a presentation P to mean the (sub)ring R₀ contains the coefficients of the relations of P. subring R₀ of R that contains the coefficients of the relations In this case there exists a model of S over R₀, i.e., there exists an R₀-algebra S₀ such that S is isomorphic to R ⊗[R₀] S₀.

If the presentation is finite, R₀ may be chosen as a Noetherian ring. In this case, this API can be used to remove Noetherian hypothesis in certain cases.

def Algebra.Presentation.coeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] (P : Presentation R S ι σ) :
Set R

The coefficients of a presentation are the coefficients of the relations.

Equations
    Instances For
      theorem Algebra.Presentation.coeffs_relation_subset_coeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} (x : σ) :
      theorem Algebra.Presentation.finite_coeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} [Finite σ] :
      def Algebra.Presentation.core {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] (P : Presentation R S ι σ) :

      The core of a presentation is the subalgebra generated by the coefficients of the relations.

      Equations
        Instances For
          theorem Algebra.Presentation.coeffs_subset_core {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] (P : Presentation R S ι σ) :
          P.coeffs P.core
          theorem Algebra.Presentation.coeffs_relation_subset_core {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} (x : σ) :
          def Algebra.Presentation.Core {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] (P : Presentation R S ι σ) :
          Type u_1

          The core coerced to a type for performance reasons.

          Equations
            Instances For
              instance Algebra.Presentation.instCommRingCore {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} :
              Equations
                instance Algebra.Presentation.instCore {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} :
                Equations
                  instance Algebra.Presentation.instFaithfulSMulCore {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} :
                  instance Algebra.Presentation.instCore_1 {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} :
                  Equations
                    instance Algebra.Presentation.instIsScalarTowerCore {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} :
                    instance Algebra.Presentation.instFiniteTypeIntCoreOfFinite {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} [Finite σ] :
                    class Algebra.Presentation.HasCoeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] (P : Presentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] :

                    A ring R₀ has the coefficients of the presentation P if the coefficients of the relations of P lie in the image of R₀ in R. The smallest subring of R satisfying this is given by Algebra.Presentation.Core P.

                    Instances
                      instance Algebra.Presentation.instHasCoeffsCore {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} :
                      theorem Algebra.Presentation.coeffs_subset_range {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] :
                      theorem Algebra.Presentation.HasCoeffs.of_isScalarTower {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] {R₁ : Type u_6} [CommRing R₁] [Algebra R₀ R₁] [Algebra R₁ R] [IsScalarTower R₀ R₁ R] [Algebra R₁ S] [IsScalarTower R₁ R S] :
                      P.HasCoeffs R₁
                      instance Algebra.Presentation.instHasCoeffsSubtypeMemSubalgebraAdjoin {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] (s : Set R) :
                      P.HasCoeffs (adjoin R₀ s)
                      theorem Algebra.Presentation.HasCoeffs.coeffs_relation_mem_range {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] (x : σ) :
                      theorem Algebra.Presentation.HasCoeffs.relation_mem_range_map {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] (x : σ) :
                      noncomputable def Algebra.Presentation.relationOfHasCoeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] (r : σ) :
                      MvPolynomial ι R₀

                      The r-th relation of P as a polynomial in R₀. This is the (arbitrary) choice of a pre-image under the map R₀[X] → R[X].

                      Equations
                        Instances For
                          theorem Algebra.Presentation.map_relationOfHasCoeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] (r : σ) :
                          @[simp]
                          theorem Algebra.Presentation.aeval_val_relationOfHasCoeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] (r : σ) :
                          @[simp]
                          theorem Algebra.Presentation.algebraTensorAlgEquiv_symm_relation {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] (r : σ) :
                          @[reducible, inline]
                          abbrev Algebra.Presentation.ModelOfHasCoeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] :
                          Type (max (max u_3 u_5) u_5 u_3)

                          The model of S over a R₀ that contains the coefficients of P is R₀[X] quotiented by the same relations.

                          Equations
                            Instances For
                              instance Algebra.Presentation.instFinitePresentationModelOfHasCoeffsOfFinite {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] [Finite ι] [Finite σ] :
                              noncomputable def Algebra.Presentation.tensorModelOfHasCoeffsHom {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] (P : Presentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] :

                              (Implementation detail): The underlying AlgHom of tensorModelOfHasCoeffsEquiv.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem Algebra.Presentation.tensorModelOfHasCoeffsHom_tmul {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] (x : R) (y : MvPolynomial ι R₀) :
                                  noncomputable def Algebra.Presentation.tensorModelOfHasCoeffsInv {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] (P : Presentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] :

                                  (Implementation detail): The inverse of tensorModelOfHasCoeffsHom.

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem Algebra.Presentation.tensorModelOfHasCoeffsInv_aeval_val {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] (x : MvPolynomial ι R₀) :
                                      noncomputable def Algebra.Presentation.tensorModelOfHasCoeffsEquiv {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] :

                                      The natural isomorphism R ⊗[R₀] S₀ ≃ₐ[R] S.

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem Algebra.Presentation.tensorModelOfHasCoeffsEquiv_tmul {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] (x : R) (y : MvPolynomial ι R₀) :
                                          @[simp]
                                          theorem Algebra.Presentation.tensorModelOfHasCoeffsEquiv_symm_tmul {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Presentation R S ι σ} (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] (x : MvPolynomial ι R₀) :
                                          noncomputable def Algebra.PreSubmersivePresentation.ofHasCoeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] (P : PreSubmersivePresentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] :

                                          The presubmersive presentation on P.ModelOfHasCoeffs R₀ provided P.HasCoeffs R₀.

                                          Equations
                                            Instances For
                                              @[simp]
                                              theorem Algebra.PreSubmersivePresentation.ofHasCoeffs_σ' {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] (P : PreSubmersivePresentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] (b : MvPolynomial ι R₀ Ideal.span (Set.range (Presentation.relationOfHasCoeffs R₀))) :
                                              @[simp]
                                              theorem Algebra.PreSubmersivePresentation.ofHasCoeffs_map {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] (P : PreSubmersivePresentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] (a✝ : σ) :
                                              (P.ofHasCoeffs R₀).map a✝ = P.map a✝
                                              @[simp]
                                              theorem Algebra.PreSubmersivePresentation.ofHasCoeffs_algebra_smul {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] (P : PreSubmersivePresentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] (a : MvPolynomial ι R₀) (a✝ : Quotient (Submodule.quotientRel (Ideal.span (Set.range (Presentation.relationOfHasCoeffs R₀))))) :
                                              SMul.smul a a✝ = Quotient.map' (fun (x : MvPolynomial ι R₀) => a * x) a✝
                                              @[simp]
                                              theorem Algebra.PreSubmersivePresentation.ofHasCoeffs_relation {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] (P : PreSubmersivePresentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] (r : σ) :
                                              @[simp]
                                              theorem Algebra.PreSubmersivePresentation.ofHasCoeffs_algebra_algebraMap_apply {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] (P : PreSubmersivePresentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] (a✝ : MvPolynomial ι R₀) :
                                              @[simp]
                                              theorem Algebra.PreSubmersivePresentation.ofHasCoeffs_val {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] (P : PreSubmersivePresentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] (i : ι) :
                                              theorem Algebra.SubmersivePresentation.exists_sum_eq_σ_jacobian_mul_σ_jacobian_inv_sub_one {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) [DecidableEq σ] [Fintype σ] :
                                              ∃ (v : σMvPolynomial ι R), i : σ, v i * P.relation i = P.jacobiMatrix.det * P.σ .unit⁻¹ - 1
                                              noncomputable def Algebra.SubmersivePresentation.jacobianRelations {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) (s : σ) :

                                              An arbitrarily chosen relation exhibiting the fact that P.jacobian is invertible.

                                              Equations
                                                Instances For
                                                  theorem Algebra.SubmersivePresentation.jacobianRelations_spec {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) [DecidableEq σ] [Fintype σ] :
                                                  i : σ, P.jacobianRelations i * P.relation i = P.jacobiMatrix.det * P.σ .unit⁻¹ - 1
                                                  def Algebra.SubmersivePresentation.coeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) :
                                                  Set R

                                                  The set of coefficients that is enough to descend a submersive presentation P.

                                                  Equations
                                                    Instances For
                                                      theorem Algebra.SubmersivePresentation.finite_coeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) :
                                                      class Algebra.SubmersivePresentation.HasCoeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] :

                                                      A type class witnessing the fact that R₀ contains enough coefficients to descend P to a submersive presentation.

                                                      Instances
                                                        @[instance 100]
                                                        instance Algebra.SubmersivePresentation.instHasCoeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] :
                                                        P.HasCoeffs R₀
                                                        noncomputable def Algebra.SubmersivePresentation.jacobianOfHasCoeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] :
                                                        MvPolynomial ι R₀

                                                        The jacobian of a presentation in the smaller coefficient ring, provided P.HasCoeffs R₀.

                                                        Equations
                                                          Instances For
                                                            @[simp]
                                                            theorem Algebra.SubmersivePresentation.map_jacobianOfHasCoeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] [Fintype σ] [DecidableEq σ] :
                                                            @[simp]
                                                            theorem Algebra.SubmersivePresentation.aeval_jacobianOfHasCoeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] :
                                                            noncomputable def Algebra.SubmersivePresentation.invJacobianOfHasCoeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] :
                                                            MvPolynomial ι R₀

                                                            The inverse jacobian of a presentation in the smaller coefficient ring, provided P.HasCoeffs R₀.

                                                            Equations
                                                              Instances For
                                                                @[simp]
                                                                theorem Algebra.SubmersivePresentation.map_invJacobianOfHasCoeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] :
                                                                @[simp]
                                                                theorem Algebra.SubmersivePresentation.aeval_invJacobianOfHasCoeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] :
                                                                noncomputable def Algebra.SubmersivePresentation.jacobianRelationsOfHasCoeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] (i : σ) :
                                                                MvPolynomial ι R₀

                                                                An arbitrarily chosen relation exhibiting the fact that P.jacobian is invertible, provided P.HasCoeffs R₀.

                                                                Equations
                                                                  Instances For
                                                                    @[simp]
                                                                    theorem Algebra.SubmersivePresentation.map_jacobianRelationsOfHasCoeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] (i : σ) :
                                                                    noncomputable def Algebra.SubmersivePresentation.ofHasCoeffs {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) (R₀ : Type u_5) [CommRing R₀] [Algebra R₀ R] [Algebra R₀ S] [IsScalarTower R₀ R S] [P.HasCoeffs R₀] [FaithfulSMul R₀ R] :

                                                                    The submersive presentation on P.ModelOfHasCoeffs R₀ provided P.HasCoeffs R₀.

                                                                    Equations
                                                                      Instances For