Documentation

Mathlib.RingTheory.Flat.Tensor

Flat modules #

M is flat if ยท โŠ— M preserves finite limits (equivalently, pullbacks, or equalizers). If R is a ring, an R-module M is flat if and only if it is mono-flat, and to show a module is flat, it suffices to check inclusions of finitely generated ideals into R. See https://stacks.math.columbia.edu/tag/00HD.

Main theorems #

theorem Module.Flat.injective_characterModule_iff_rTensor_preserves_injective_linearMap {R : Type u} {M : Type v} [CommRing R] [AddCommGroup M] [Module R M] :
Injective R (CharacterModule M) โ†” โˆ€ โฆƒN N' : Type vโฆ„ [inst : AddCommGroup N] [inst_1 : AddCommGroup N'] [inst_2 : Module R N] [inst_3 : Module R N'] (f : N โ†’โ‚—[R] N'), Function.Injective โ‡‘f โ†’ Function.Injective โ‡‘(LinearMap.rTensor M f)

Define the character module of M to be M โ†’+ โ„š โงธ โ„ค. The character module of M is an injective module if and only if f โŠ— ๐Ÿ™ M is injective for any linear map f in the same universe as M.

CharacterModule M is an injective module iff M is flat. See [Lambek_1964] for a self-contained proof.

An R-module M is flat iff for all ideals I of R, the tensor product of the inclusion I โ†’ R and the identity M โ†’ M is injective. See iff_rTensor_injective to restrict to finitely generated ideals I.

theorem Module.Flat.iff_rTensor_injective {R : Type u} {M : Type v} [CommRing R] [AddCommGroup M] [Module R M] :
Flat R M โ†” โˆ€ โฆƒI : Ideal Rโฆ„, I.FG โ†’ Function.Injective โ‡‘(LinearMap.rTensor M (Submodule.subtype I))

A module M over a ring R is flat iff for all finitely generated ideals I of R, the tensor product of the inclusion I โ†’ R and the identity M โ†’ M is injective. See iff_rTensor_injective' to extend to all ideals I.

theorem Module.Flat.iff_lTensor_injective {R : Type u} {M : Type v} [CommRing R] [AddCommGroup M] [Module R M] :
Flat R M โ†” โˆ€ โฆƒI : Ideal Rโฆ„, I.FG โ†’ Function.Injective โ‡‘(LinearMap.lTensor M (Submodule.subtype I))

The lTensor-variant of iff_rTensor_injective.

An R-module M is flat if for all finitely generated ideals I of R, the canonical map I โŠ— M โ†’โ‚— M is injective.