Documentation

Mathlib.RingTheory.HopfAlgebra.GroupLike

Group-like elements in a Hopf algebra #

This file proves that group-like elements in a Hopf algebra form a group.

Turn a group-like element a into a unit with inverse its antipode.

Equations
    Instances For
      @[simp]
      theorem GroupLike.val_toUnits_apply (R : Type u_1) {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] (a : GroupLike R A) :
      โ†‘((toUnits R) a) = โ†‘a
      theorem IsGroupLikeElem.isUnit {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] {a : A} (ha : IsGroupLikeElem R a) :
      instance GroupLike.instInv {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] :
      Equations
        @[simp]
        theorem GroupLike.val_inv {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] (a : GroupLike R A) :
        instance GroupLike.instGroup {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] :
        Equations