Group-like elements in a Hopf algebra #
This file proves that group-like elements in a Hopf algebra form a group.
@[simp]
theorem
IsGroupLikeElem.antipode_mul_cancel
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[HopfAlgebra R A]
{a : A}
(ha : IsGroupLikeElem R a)
:
@[simp]
theorem
IsGroupLikeElem.mul_antipode_cancel
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[HopfAlgebra R A]
{a : A}
(ha : IsGroupLikeElem R a)
:
def
GroupLike.toUnits
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[HopfAlgebra R A]
:
Turn a group-like element a into a unit with inverse its antipode.
Equations
Instances For
@[simp]
theorem
GroupLike.val_toUnits_apply
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[HopfAlgebra R A]
(a : GroupLike R A)
:
@[simp]
theorem
GroupLike.val_inv_toUnits_apply
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[HopfAlgebra R A]
(a : GroupLike R A)
:
theorem
IsGroupLikeElem.isUnit
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[HopfAlgebra R A]
{a : A}
(ha : IsGroupLikeElem R a)
:
IsUnit a
@[simp]
theorem
IsGroupLikeElem.antipode
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[HopfAlgebra R A]
{a : A}
(ha : IsGroupLikeElem R a)
:
IsGroupLikeElem R ((HopfAlgebraStruct.antipode R) a)
@[simp]
theorem
IsGroupLikeElem.antipode_antipode
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[HopfAlgebra R A]
{a : A}
(ha : IsGroupLikeElem R a)
:
instance
GroupLike.instInv
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[HopfAlgebra R A]
:
Equations
@[simp]
theorem
GroupLike.val_inv
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[HopfAlgebra R A]
(a : GroupLike R A)
:
instance
GroupLike.instGroup
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[HopfAlgebra R A]
:
Equations
instance
GroupLike.instCommGroup
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[CommSemiring A]
[HopfAlgebra R A]
: