Documentation

Mathlib.RingTheory.Morita.Matrix

Morita Equivalence between R and Mₙ(R) #

Main definitions #

Main results #

The functor from Mod-R to Mod-Mₙ(R) induced by LinearMap.mapModule and Matrix.matrixModule.

Equations
    Instances For
      @[simp]
      theorem ModuleCat.toMatrixModCat_map (R : Type u) (ι : Type v) [Ring R] [Fintype ι] [DecidableEq ι] {X✝ Y✝ : ModuleCat R} (f : X✝ Y✝) :
      @[simp]
      theorem ModuleCat.toMatrixModCat_obj_carrier (R : Type u) (ι : Type v) [Ring R] [Fintype ι] [DecidableEq ι] (M : ModuleCat R) :
      ((toMatrixModCat R ι).obj M) = (ιM)
      def MatrixModCat.toModuleCatObj (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (M : Type u_1) [AddCommGroup M] [Module (Matrix ι ι R) M] [Module R M] [IsScalarTower R (Matrix ι ι R) M] (i : ι) :

      The image of Eᵢᵢ (the elementary matrix) acting on all elements in M.

      Equations
        Instances For
          @[simp]
          theorem MatrixModCat.mem_toModuleCatObj {R : Type u} {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] {M : Type u_1} [AddCommGroup M] [Module (Matrix ι ι R) M] [Module R M] [IsScalarTower R (Matrix ι ι R) M] (i : ι) {x : M} :
          x toModuleCatObj R M i ∃ (y : M), Matrix.single i i 1 y = x
          def MatrixModCat.fromMatrixLinear {R : Type u} {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] {M : Type u_1} [AddCommGroup M] [Module (Matrix ι ι R) M] [Module R M] {N : Type u_2} [AddCommGroup N] [Module (Matrix ι ι R) N] (i : ι) [Module R N] [IsScalarTower R (Matrix ι ι R) N] [IsScalarTower R (Matrix ι ι R) M] (f : M →ₗ[Matrix ι ι R] N) :
          (toModuleCatObj R M i) →ₗ[R] (toModuleCatObj R N i)

          An R-linear map between Eᵢᵢ • M and Eᵢᵢ • N induced by an Mₙ(R)-linear map from M to N.

          Equations
            Instances For
              @[simp]
              theorem MatrixModCat.fromMatrixLinear_apply_coe {R : Type u} {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] {M : Type u_1} [AddCommGroup M] [Module (Matrix ι ι R) M] [Module R M] {N : Type u_2} [AddCommGroup N] [Module (Matrix ι ι R) N] (i : ι) [Module R N] [IsScalarTower R (Matrix ι ι R) N] [IsScalarTower R (Matrix ι ι R) M] (f : M →ₗ[Matrix ι ι R] N) (c : (toModuleCatObj R M i)) :
              ((fromMatrixLinear i f) c) = f c
              theorem MatrixModCat.isScalarTower_toModuleCat (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (M : ModuleCat (Matrix ι ι R)) :
              IsScalarTower R (Matrix ι ι R) M
              def MatrixModCat.toModuleCat (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (i : ι) :

              The functor from the category of modules over Mₙ(R) to the category of modules over R induced by sending M to the image of Eᵢᵢ • · where Eᵢᵢ is the elementary matrix.

              Equations
                Instances For
                  @[simp]
                  theorem MatrixModCat.toModuleCat_obj_isModule (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (i : ι) (M : ModuleCat (Matrix ι ι R)) :
                  @[simp]
                  theorem MatrixModCat.toModuleCat_obj_isAddCommGroup (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (i : ι) (M : ModuleCat (Matrix ι ι R)) :
                  @[simp]
                  theorem MatrixModCat.toModuleCat_map (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (i : ι) {X✝ Y✝ : ModuleCat (Matrix ι ι R)} (f : X✝ Y✝) :
                  @[simp]
                  theorem MatrixModCat.toModuleCat_obj_carrier (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (i : ι) (M : ModuleCat (Matrix ι ι R)) :
                  ((toModuleCat R i).obj M) = (toModuleCatObj R (↑M) i)

                  The linear equiv induced by the equality toModuleCat (toMatrixModCat M) = Eᵢᵢ • Mⁿ.

                  Equations
                    Instances For
                      def fromModuleCatToModuleCatLinearEquiv (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (M : Type u_1) [AddCommGroup M] [Module R M] (i : ι) :
                      (MatrixModCat.toModuleCatObj R (ιM) i) ≃ₗ[R] M

                      Auxiliary isomorphism showing that compose two functors gives id on objects.

                      Equations
                        Instances For
                          @[simp]
                          theorem fromModuleCatToModuleCatLinearEquiv_apply (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (M : Type u_1) [AddCommGroup M] [Module R M] (i : ι) (x : (MatrixModCat.toModuleCatObj R (ιM) i)) :
                          (fromModuleCatToModuleCatLinearEquiv R M i) x = i_1 : ι, x i_1
                          @[simp]
                          theorem fromModuleCatToModuleCatLinearEquiv_symm_apply_coe (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (M : Type u_1) [AddCommGroup M] [Module R M] (i : ι) (x : M) (j : ι) :

                          The natural isomorphism showing that toModuleCat is the left inverse of toMatrixModCat.

                          Equations
                            Instances For
                              def toModuleCatFromModuleCatLinearEquiv (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (M : ModuleCat (Matrix ι ι R)) (j : ι) :
                              M ≃ₗ[Matrix ι ι R] ι(MatrixModCat.toModuleCatObj R (↑M) j)

                              The linear equiv induced by the equality toMatrixModCat (toModuleCat M) = Mⁿ

                              Equations
                                Instances For

                                  The natural isomorphism showing that toMatrixModCat is the right inverse of toModuleCat.

                                  Equations
                                    Instances For
                                      def ModuleCat.matrixEquivalence (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (i : ι) :

                                      ModuleCat.toMatrixModCat R ι and MatrixModCat.toModuleCat R i together form an equivalence of categories.

                                      Equations
                                        Instances For
                                          def moritaEquivalenceMatrix (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (R₀ : Type u_1) [CommRing R₀] [Algebra R₀ R] (i : ι) :
                                          MoritaEquivalence R₀ R (Matrix ι ι R)

                                          Moreover ModuleCat.matrixEquivalence is a MoritaEquivalence.

                                          Equations
                                            Instances For
                                              @[simp]
                                              theorem moritaEquivalenceMatrix_eqv (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (R₀ : Type u_1) [CommRing R₀] [Algebra R₀ R] (i : ι) :
                                              theorem IsMoritaEquivalent.matrix (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (R₀ : Type u_1) [CommRing R₀] [Algebra R₀ R] [Nonempty ι] :
                                              IsMoritaEquivalent R₀ R (Matrix ι ι R)