Documentation

Mathlib.RingTheory.Nilpotent.Exp

Exponential map on algebras #

This file defines the exponential map IsNilpotent.exp on โ„š-algebras. The definition of IsNilpotent.exp a applies to any element a in an algebra over โ„š, though it yields meaningful (non-junk) values only when a is nilpotent.

The main result is IsNilpotent.exp_add_of_commute, which establishes the expected connection between the additive and multiplicative structures of A for commuting nilpotent elements.

Additionally, IsNilpotent.isUnit_exp shows that if a is nilpotent in A, then IsNilpotent.exp a is a unit in A.

Note: Although the definition works with โ„š-algebras, the results can be applied to any algebra over a characteristic zero field.

Main definitions #

Tags #

algebra, exponential map, nilpotent

noncomputable def IsNilpotent.exp {A : Type u_1} [Ring A] [Module โ„š A] (a : A) :
A

The exponential map on algebras, defined in analogy with the usual exponential series. It provides meaningful (non-junk) values for nilpotent elements.

Equations
    Instances For
      theorem IsNilpotent.exp_eq_sum {A : Type u_1} [Ring A] [Module โ„š A] {a : A} {k : โ„•} (h : a ^ k = 0) :
      exp a = โˆ‘ i โˆˆ Finset.range k, (โ†‘i.factorial)โปยน โ€ข a ^ i
      theorem IsNilpotent.exp_smul_eq_sum {A : Type u_1} [Ring A] [Module โ„š A] {M : Type u_2} [AddCommGroup M] [Module A M] [Module โ„š M] {a : A} {m : M} {k : โ„•} (h : a ^ k โ€ข m = 0) (hn : IsNilpotent a) :
      exp a โ€ข m = โˆ‘ i โˆˆ Finset.range k, (โ†‘i.factorial)โปยน โ€ข a ^ i โ€ข m
      theorem IsNilpotent.exp_add_of_commute {A : Type u_1} [Ring A] [Module โ„š A] {a b : A} (hโ‚ : Commute a b) (hโ‚‚ : IsNilpotent a) (hโ‚ƒ : IsNilpotent b) :
      exp (a + b) = exp a * exp b
      @[simp]
      theorem IsNilpotent.exp_zero {A : Type u_1} [Ring A] [Module โ„š A] :
      exp 0 = 1
      theorem IsNilpotent.map_exp {A : Type u_1} [Ring A] [Module โ„š A] {B : Type u_2} {F : Type u_3} [Ring B] [FunLike F A B] [RingHomClass F A B] [Module โ„š B] {a : A} (ha : IsNilpotent a) (f : F) :
      f (exp a) = exp (f a)
      theorem IsNilpotent.exp_smul {A : Type u_1} [Ring A] [Module โ„š A] {G : Type u_2} [Monoid G] [MulSemiringAction G A] (g : G) {a : A} (ha : IsNilpotent a) :
      theorem Module.End.exp_mul_of_derivation (R : Type u_4) (B : Type u_5) [CommRing R] [NonUnitalNonAssocRing B] [Module R B] [SMulCommClass R B B] [IsScalarTower R B B] [Module โ„š B] (D : B โ†’โ‚—[R] B) (h_der : โˆ€ (x y : B), D (x * y) = x * D y + D x * y) (h_nil : IsNilpotent D) (x y : B) :