Documentation

Mathlib.RingTheory.Polynomial.Eisenstein.Distinguished

Distinguished polynomial #

In this file we define the predicate Polynomial.IsDistinguishedAt and develop the most basic lemmas about it.

structure Polynomial.IsDistinguishedAt {R : Type u_1} [CommRing R] (f : Polynomial R) (I : Ideal R) extends f.IsWeaklyEisensteinAt I :

Given an ideal I of a commutative ring R, we say that a polynomial f : R[X] is Distinguished at I if f is monic and IsWeaklyEisensteinAt I. i.e. f is of the form xโฟ + aโ‚xโฟโปยน + โ‹ฏ + aโ‚™ with aแตข โˆˆ I for all i.

Instances For
    theorem Polynomial.IsDistinguishedAt.map_ne_zero_of_eq_mul {R : Type u_1} [CommRing R] {I : Ideal R} (f h : PowerSeries R) {g : Polynomial R} (distinguish : g.IsDistinguishedAt I) (notMem : PowerSeries.constantCoeff h โˆ‰ I) (eq : f = โ†‘g * h) :
    theorem Polynomial.IsDistinguishedAt.degree_eq_coe_lift_order_map {R : Type u_1} [CommRing R] {I : Ideal R} (f h : PowerSeries R) {g : Polynomial R} (distinguish : g.IsDistinguishedAt I) (notMem : PowerSeries.constantCoeff h โˆ‰ I) (eq : f = โ†‘g * h) :
    g.degree = โ†‘(((PowerSeries.map (Ideal.Quotient.mk I)) f).order.lift โ‹ฏ)
    theorem Polynomial.IsDistinguishedAt.coe_natDegree_eq_order_map {R : Type u_1} [CommRing R] {I : Ideal R} (f h : PowerSeries R) {g : Polynomial R} (distinguish : g.IsDistinguishedAt I) (notMem : PowerSeries.constantCoeff h โˆ‰ I) (eq : f = โ†‘g * h) :