Smooth is locally standard smooth #
In this file we show that a ring homomorphism is smooth if and only if it is locally standard smooth.
theorem
RingHom.IsStandardSmooth.smooth
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
{f : R β+* S}
(hf : f.IsStandardSmooth)
:
f.Smooth
Any standard smooth ring homomorphism is smooth.
theorem
RingHom.smooth_iff_locally_isStandardSmooth
{R S : Type u}
[CommRing R]
[CommRing S]
{f : R β+* S}
:
A ring homomorphism is smooth if and only if it is locally standard smooth.
theorem
RingHom.etale_iff_isStandardSmoothOfRelativeDimension_zero
{R S : Type u}
[CommRing R]
[CommRing S]
{f : R β+* S}
:
A ring homomorphism is Γ©tale if and only if it is standard smooth of relative dimension 0.