Documentation

Mathlib.RingTheory.Unramified.Field

Unramified algebras over fields #

Main results #

Let K be a field, A be a K-algebra and L be a field extension of K.

References #

theorem Algebra.IsUnramifiedAt.not_minpoly_sq_dvd {K : Type u_1} {A : Type u_2} [Field K] [CommRing A] [Algebra K A] (Q : Ideal A) [Q.IsPrime] [IsUnramifiedAt K Q] (x : A) (p : Polynomial K) (hp₁ : Ideal.span {p} = RingHom.ker (Polynomial.aeval x).toRingHom) (hpā‚‚ : Function.Surjective ⇑(Polynomial.aeval x)) :

If A = K[X]/⟨p⟩ is unramified at some prime Q, then the minpoly of X in κ(Q) only divides p once.