Documentation

Mathlib.Topology.Algebra.Group.SubmonoidClosure

Topological closure of the submonoid closure #

In this file we prove several versions of the following statement: if G is a compact topological group and s : Set G, then the topological closures of Submonoid.closure s and Subgroup.closure s are equal.

The proof is based on the following observation, see mapClusterPt_self_zpow_atTop_pow: each x^m, m : โ„ค is a limit point (MapClusterPt) of the sequence x^n, n : โ„•, as n โ†’ โˆž.

theorem closure_range_zpow_eq_pow {G : Type u_1} [Group G] [TopologicalSpace G] [CompactSpace G] [IsTopologicalGroup G] (x : G) :
closure (Set.range fun (x_1 : โ„ค) => x ^ x_1) = closure (Set.range fun (x_1 : โ„•) => x ^ x_1)
theorem denseRange_zpow_iff_pow {G : Type u_1} [Group G] [TopologicalSpace G] [CompactSpace G] [IsTopologicalGroup G] {x : G} :
(DenseRange fun (x_1 : โ„ค) => x ^ x_1) โ†” DenseRange fun (x_1 : โ„•) => x ^ x_1