Documentation

Mathlib.Topology.Algebra.InfiniteSum.ConditionalInt

Sums over symmetric integer intervals #

This file contains some lemmas about sums over symmetric integer intervals Ixx -N N used, for example in the definition of the Eisenstein series E2. In particular we define symmetricIcc, symmetricIco, symmetricIoc and symmetricIoo as SummationFilters corresponding to the intervals Icc -N N, Ico -N N, Ioc -N N respectively. We also prove that these filters are all NeBot and LeAtTop.

The SummationFilter on a locally finite order G corresponding to the symmetric intervals Icc (-N) N·

Equations
    Instances For

      The SummationFilter on a locally finite order G corresponding to the symmetric intervals Ioo (-N) N· Note that for G = ℤ this coincides with symmetricIcc so one should use that. See symmetricIcc_eq_symmetricIoo_int.

      Equations
        Instances For

          The SummationFilter on a locally finite order G corresponding to the symmetric intervals Ico (-N) N·

          Equations
            Instances For

              The SummationFilter on a locally finite order G corresponding to the symmetric intervals Ioc (-N) N·

              Equations
                Instances For
                  @[deprecated HasProd.hasProd_symmetricIco_of_hasProd_symmetricIcc (since := "2025-12-15")]

                  Alias of HasProd.hasProd_symmetricIco_of_hasProd_symmetricIcc.

                  @[deprecated SummationFilter.multipliable_symmetricIco_of_multipliable_symmetricIcc (since := "2025-12-15")]

                  Alias of SummationFilter.multipliable_symmetricIco_of_multipliable_symmetricIcc.

                  theorem SummationFilter.hasProd_symmetricIcc_iff {α : Type u_2} [CommMonoid α] [TopologicalSpace α] {f : α} {a : α} :
                  HasProd f a (symmetricIcc ) Filter.Tendsto (fun (N : ) => nFinset.Icc (-N) N, f n) Filter.atTop (nhds a)
                  theorem SummationFilter.hasSum_symmetricIcc_iff {α : Type u_2} [AddCommMonoid α] [TopologicalSpace α] {f : α} {a : α} :
                  HasSum f a (symmetricIcc ) Filter.Tendsto (fun (N : ) => nFinset.Icc (-N) N, f n) Filter.atTop (nhds a)
                  theorem SummationFilter.hasProd_symmetricIco_int_iff {α : Type u_2} [CommMonoid α] [TopologicalSpace α] {f : α} {a : α} :
                  HasProd f a (symmetricIco ) Filter.Tendsto (fun (N : ) => nFinset.Ico (-N) N, f n) Filter.atTop (nhds a)
                  theorem SummationFilter.hasSum_symmetricIco_int_iff {α : Type u_2} [AddCommMonoid α] [TopologicalSpace α] {f : α} {a : α} :
                  HasSum f a (symmetricIco ) Filter.Tendsto (fun (N : ) => nFinset.Ico (-N) N, f n) Filter.atTop (nhds a)
                  theorem SummationFilter.hasProd_symmetricIoc_int_iff {α : Type u_2} [CommMonoid α] [TopologicalSpace α] {f : α} {a : α} :
                  HasProd f a (symmetricIoc ) Filter.Tendsto (fun (N : ) => nFinset.Ioc (-N) N, f n) Filter.atTop (nhds a)
                  theorem SummationFilter.hasSum_symmetricIoc_int_iff {α : Type u_2} [AddCommMonoid α] [TopologicalSpace α] {f : α} {a : α} :
                  HasSum f a (symmetricIoc ) Filter.Tendsto (fun (N : ) => nFinset.Ioc (-N) N, f n) Filter.atTop (nhds a)