Documentation

Mathlib.Topology.ContinuousMap.SecondCountableSpace

Second countable topology on C(X, Y) #

In this file we prove that C(X, Y) with compact-open topology has second countable topology, if

theorem ContinuousMap.compactOpen_eq_generateFrom {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {S : Set (Set X)} {T : Set (Set Y)} (hSโ‚ : โˆ€ K โˆˆ S, IsCompact K) (hT : TopologicalSpace.IsTopologicalBasis T) (hSโ‚‚ : โˆ€ (f : C(X, Y)) (x : X), โˆ€ V โˆˆ T, f x โˆˆ V โ†’ โˆƒ K โˆˆ S, K โˆˆ nhds x โˆง Set.MapsTo (โ‡‘f) K V) :
compactOpen = TopologicalSpace.generateFrom (Set.image2 (fun (K : Set X) (t : Set (Set Y)) => {f : C(X, Y) | Set.MapsTo (โ‡‘f) K (โ‹ƒโ‚€ t)}) S {t : Set (Set Y) | t.Finite โˆง t โІ T})
theorem ContinuousMap.secondCountableTopology {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] [SecondCountableTopology Y] (hX : โˆƒ (S : Set (Set X)), S.Countable โˆง (โˆ€ K โˆˆ S, IsCompact K) โˆง โˆ€ (f : C(X, Y)) (V : Set Y), IsOpen V โ†’ โˆ€ x โˆˆ โ‡‘f โปยน' V, โˆƒ K โˆˆ S, K โˆˆ nhds x โˆง Set.MapsTo (โ‡‘f) K V) :

A version of instSecondCountableTopology with a technical assumption instead of [SecondCountableTopology X] [LocallyCompactSpace X]. It is here as a reminder of what could be an intermediate goal, if someone tries to weaken the assumptions in the instance (e.g., from [LocallyCompactSpace X] to [LocallyCompactPair X Y] - not sure if it's true).