Documentation

Mathlib.Topology.OpenPartialHomeomorph.Composition

Partial homeomorphisms: composition #

Main definitions #

Composition #

trans: composition of two open partial homeomorphisms

Composition of two open partial homeomorphisms when the target of the first and the source of the second coincide.

Equations
    Instances For
      @[simp]
      theorem OpenPartialHomeomorph.trans'_symm_apply {X : Type u_1} {Y : Type u_3} {Z : Type u_5} [TopologicalSpace X] [TopologicalSpace Y] [TopologicalSpace Z] (e : OpenPartialHomeomorph X Y) (e' : OpenPartialHomeomorph Y Z) (h : e.target = e'.source) (aโœ : Z) :
      โ†‘(e.trans' e' h).symm aโœ = โ†‘e.symm (โ†‘e'.symm aโœ)
      @[simp]
      theorem OpenPartialHomeomorph.trans'_apply {X : Type u_1} {Y : Type u_3} {Z : Type u_5} [TopologicalSpace X] [TopologicalSpace Y] [TopologicalSpace Z] (e : OpenPartialHomeomorph X Y) (e' : OpenPartialHomeomorph Y Z) (h : e.target = e'.source) (aโœ : X) :
      โ†‘(e.trans' e' h) aโœ = โ†‘e' (โ†‘e aโœ)

      Composing two open partial homeomorphisms, by restricting to the maximal domain where their composition is well defined. Within the Manifold namespace, there is the notation e โ‰ซโ‚• f for this.

      Equations
        Instances For
          @[simp]
          theorem OpenPartialHomeomorph.coe_trans {X : Type u_1} {Y : Type u_3} {Z : Type u_5} [TopologicalSpace X] [TopologicalSpace Y] [TopologicalSpace Z] (e : OpenPartialHomeomorph X Y) (e' : OpenPartialHomeomorph Y Z) :
          โ†‘(e.trans e') = โ†‘e' โˆ˜ โ†‘e
          @[simp]
          theorem OpenPartialHomeomorph.coe_trans_symm {X : Type u_1} {Y : Type u_3} {Z : Type u_5} [TopologicalSpace X] [TopologicalSpace Y] [TopologicalSpace Z] (e : OpenPartialHomeomorph X Y) (e' : OpenPartialHomeomorph Y Z) :
          โ†‘(e.trans e').symm = โ†‘e.symm โˆ˜ โ†‘e'.symm
          theorem OpenPartialHomeomorph.trans_apply {X : Type u_1} {Y : Type u_3} {Z : Type u_5} [TopologicalSpace X] [TopologicalSpace Y] [TopologicalSpace Z] (e : OpenPartialHomeomorph X Y) (e' : OpenPartialHomeomorph Y Z) {x : X} :
          โ†‘(e.trans e') x = โ†‘e' (โ†‘e x)
          @[simp]
          theorem OpenPartialHomeomorph.ofSet_trans_ofSet {X : Type u_1} [TopologicalSpace X] {s : Set X} (hs : IsOpen s) {s' : Set X} (hs' : IsOpen s') :
          (ofSet s hs).trans (ofSet s' hs') = ofSet (s โˆฉ s') โ‹ฏ
          theorem OpenPartialHomeomorph.EqOnSource.trans' {X : Type u_1} {Y : Type u_3} {Z : Type u_5} [TopologicalSpace X] [TopologicalSpace Y] [TopologicalSpace Z] {e e' : OpenPartialHomeomorph X Y} {f f' : OpenPartialHomeomorph Y Z} (he : e โ‰ˆ e') (hf : f โ‰ˆ f') :
          e.trans f โ‰ˆ e'.trans f'

          Composition of open partial homeomorphisms respects equivalence.

          Composition of an open partial homeomorphism and its inverse is equivalent to the restriction of the identity to the source

          theorem OpenPartialHomeomorph.restr_symm_trans {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {s : Set X} {e' : OpenPartialHomeomorph X Y} (hs : IsOpen s) (hs' : IsOpen (โ†‘e '' s)) (hs'' : s โІ e.source) :
          (e.restr s).symm.trans e' โ‰ˆ (e.symm.trans e').restr (โ†‘e '' s)
          @[deprecated Homeomorph.trans_toOpenPartialHomeomorph (since := "2025-08-29")]

          Alias of Homeomorph.trans_toOpenPartialHomeomorph.

          Precompose an open partial homeomorphism with a homeomorphism. We modify the source and target to have better definitional behavior.

          Equations
            Instances For
              @[deprecated Homeomorph.transOpenPartialHomeomorph (since := "2025-08-29")]

              Alias of Homeomorph.transOpenPartialHomeomorph.


              Precompose an open partial homeomorphism with a homeomorphism. We modify the source and target to have better definitional behavior.

              Equations
                Instances For
                  @[deprecated Homeomorph.transOpenPartialHomeomorph_eq_trans (since := "2025-08-29")]

                  Alias of Homeomorph.transOpenPartialHomeomorph_eq_trans.

                  @[deprecated Homeomorph.transOpenPartialHomeomorph_trans (since := "2025-08-29")]

                  Alias of Homeomorph.transOpenPartialHomeomorph_trans.

                  @[deprecated Homeomorph.trans_transOpenPartialHomeomorph (since := "2025-08-29")]

                  Alias of Homeomorph.trans_transOpenPartialHomeomorph.