Documentation

Mathlib.Topology.OpenPartialHomeomorph.Continuity

Partial homeomorphisms and continuity #

Main theorems #

theorem OpenPartialHomeomorph.eventually_left_inverse {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {x : X} (hx : x โˆˆ e.source) :
โˆ€แถ  (y : X) in nhds x, โ†‘e.symm (โ†‘e y) = y
theorem OpenPartialHomeomorph.eventually_left_inverse' {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {x : Y} (hx : x โˆˆ e.target) :
โˆ€แถ  (y : X) in nhds (โ†‘e.symm x), โ†‘e.symm (โ†‘e y) = y
theorem OpenPartialHomeomorph.eventually_right_inverse {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {x : Y} (hx : x โˆˆ e.target) :
โˆ€แถ  (y : Y) in nhds x, โ†‘e (โ†‘e.symm y) = y
theorem OpenPartialHomeomorph.eventually_right_inverse' {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {x : X} (hx : x โˆˆ e.source) :
โˆ€แถ  (y : Y) in nhds (โ†‘e x), โ†‘e (โ†‘e.symm y) = y
theorem OpenPartialHomeomorph.continuousAt {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {x : X} (h : x โˆˆ e.source) :
ContinuousAt (โ†‘e) x

An open partial homeomorphism is continuous at any point of its source

theorem OpenPartialHomeomorph.continuousAt_symm {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {x : Y} (h : x โˆˆ e.target) :
ContinuousAt (โ†‘e.symm) x

An open partial homeomorphism inverse is continuous at any point of its target

theorem OpenPartialHomeomorph.tendsto_symm {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {x : X} (hx : x โˆˆ e.source) :
Filter.Tendsto (โ†‘e.symm) (nhds (โ†‘e x)) (nhds x)
theorem OpenPartialHomeomorph.map_nhds_eq {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {x : X} (hx : x โˆˆ e.source) :
Filter.map (โ†‘e) (nhds x) = nhds (โ†‘e x)
theorem OpenPartialHomeomorph.symm_map_nhds_eq {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {x : X} (hx : x โˆˆ e.source) :
Filter.map (โ†‘e.symm) (nhds (โ†‘e x)) = nhds x
theorem OpenPartialHomeomorph.image_mem_nhds {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {x : X} (hx : x โˆˆ e.source) {s : Set X} (hs : s โˆˆ nhds x) :
โ†‘e '' s โˆˆ nhds (โ†‘e x)
theorem OpenPartialHomeomorph.map_nhdsWithin_eq {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {x : X} (hx : x โˆˆ e.source) (s : Set X) :
Filter.map (โ†‘e) (nhdsWithin x s) = nhdsWithin (โ†‘e x) (โ†‘e '' (e.source โˆฉ s))
theorem OpenPartialHomeomorph.map_nhdsWithin_preimage_eq {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {x : X} (hx : x โˆˆ e.source) (s : Set Y) :
Filter.map (โ†‘e) (nhdsWithin x (โ†‘e โปยน' s)) = nhdsWithin (โ†‘e x) s
theorem OpenPartialHomeomorph.eventually_nhds {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {x : X} (p : Y โ†’ Prop) (hx : x โˆˆ e.source) :
(โˆ€แถ  (y : Y) in nhds (โ†‘e x), p y) โ†” โˆ€แถ  (x : X) in nhds x, p (โ†‘e x)
theorem OpenPartialHomeomorph.eventually_nhds' {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {x : X} (p : X โ†’ Prop) (hx : x โˆˆ e.source) :
(โˆ€แถ  (y : Y) in nhds (โ†‘e x), p (โ†‘e.symm y)) โ†” โˆ€แถ  (x : X) in nhds x, p x
theorem OpenPartialHomeomorph.eventually_nhdsWithin {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {x : X} (p : Y โ†’ Prop) {s : Set X} (hx : x โˆˆ e.source) :
(โˆ€แถ  (y : Y) in nhdsWithin (โ†‘e x) (โ†‘e.symm โปยน' s), p y) โ†” โˆ€แถ  (x : X) in nhdsWithin x s, p (โ†‘e x)
theorem OpenPartialHomeomorph.eventually_nhdsWithin' {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {x : X} (p : X โ†’ Prop) {s : Set X} (hx : x โˆˆ e.source) :
(โˆ€แถ  (y : Y) in nhdsWithin (โ†‘e x) (โ†‘e.symm โปยน' s), p (โ†‘e.symm y)) โ†” โˆ€แถ  (x : X) in nhdsWithin x s, p x
theorem OpenPartialHomeomorph.preimage_eventuallyEq_target_inter_preimage_inter {X : Type u_1} {Y : Type u_3} {Z : Type u_5} [TopologicalSpace X] [TopologicalSpace Y] [TopologicalSpace Z] {e : OpenPartialHomeomorph X Y} {s : Set X} {t : Set Z} {x : X} {f : X โ†’ Z} (hf : ContinuousWithinAt f s x) (hxe : x โˆˆ e.source) (ht : t โˆˆ nhds (f x)) :

This lemma is useful in the manifold library in the case that e is a chart. It states that locally around e x the set e.symm โปยน' s is the same as the set intersected with the target of e and some other neighborhood of f x (which will be the source of a chart on Z).

theorem OpenPartialHomeomorph.continuousWithinAt_iff_continuousWithinAt_comp_right {X : Type u_1} {Y : Type u_3} {Z : Type u_5} [TopologicalSpace X] [TopologicalSpace Y] [TopologicalSpace Z] (e : OpenPartialHomeomorph X Y) {f : Y โ†’ Z} {s : Set Y} {x : Y} (h : x โˆˆ e.target) :
ContinuousWithinAt f s x โ†” ContinuousWithinAt (f โˆ˜ โ†‘e) (โ†‘e โปยน' s) (โ†‘e.symm x)

Continuity within a set at a point can be read under right composition with a local homeomorphism, if the point is in its target

theorem OpenPartialHomeomorph.continuousAt_iff_continuousAt_comp_right {X : Type u_1} {Y : Type u_3} {Z : Type u_5} [TopologicalSpace X] [TopologicalSpace Y] [TopologicalSpace Z] (e : OpenPartialHomeomorph X Y) {f : Y โ†’ Z} {x : Y} (h : x โˆˆ e.target) :
ContinuousAt f x โ†” ContinuousAt (f โˆ˜ โ†‘e) (โ†‘e.symm x)

Continuity at a point can be read under right composition with an open partial homeomorphism, if the point is in its target

A function is continuous on a set if and only if its composition with an open partial homeomorphism on the right is continuous on the corresponding set.

Continuity within a set at a point can be read under left composition with a local homeomorphism if a neighborhood of the initial point is sent to the source of the local homeomorphism

Continuity at a point can be read under left composition with an open partial homeomorphism if a neighborhood of the initial point is sent to the source of the partial homeomorphism

A function is continuous on a set if and only if its composition with an open partial homeomorphism on the left is continuous on the corresponding set.

A function is continuous if and only if its composition with an open partial homeomorphism on the left is continuous and its image is contained in the source.