Documentation

Mathlib.Topology.Sets.Compacts

Compact sets #

We define a few types of compact sets in a topological space.

Main Definitions #

For a topological space α,

Compact sets #

structure TopologicalSpace.Compacts (α : Type u_4) [TopologicalSpace α] :
Type u_4

The type of compact sets of a topological space.

  • carrier : Set α

    the carrier set, i.e. the points in this set

  • isCompact' : IsCompact self.carrier
Instances For

    See Note [custom simps projection].

    Equations
      Instances For

        Reinterpret a compact as a closed set.

        Equations
          Instances For
            @[simp]
            theorem TopologicalSpace.Compacts.mem_toCloseds {α : Type u_1} [TopologicalSpace α] [T2Space α] {x : α} {s : Compacts α} :
            theorem TopologicalSpace.Compacts.ext {α : Type u_1} [TopologicalSpace α] {s t : Compacts α} (h : s = t) :
            s = t
            theorem TopologicalSpace.Compacts.ext_iff {α : Type u_1} [TopologicalSpace α] {s t : Compacts α} :
            s = t s = t
            @[simp]
            theorem TopologicalSpace.Compacts.coe_mk {α : Type u_1} [TopologicalSpace α] (s : Set α) (h : IsCompact s) :
            { carrier := s, isCompact' := h } = s

            The type of compact sets is inhabited, with default element the empty set.

            Equations
              @[simp]
              theorem TopologicalSpace.Compacts.coe_sup {α : Type u_1} [TopologicalSpace α] (s t : Compacts α) :
              (st) = s t
              @[simp]
              theorem TopologicalSpace.Compacts.coe_inf {α : Type u_1} [TopologicalSpace α] [T2Space α] (s t : Compacts α) :
              (st) = s t
              @[simp]
              theorem TopologicalSpace.Compacts.coe_finset_sup {α : Type u_1} [TopologicalSpace α] {ι : Type u_4} {s : Finset ι} {f : ιCompacts α} :
              (s.sup f) = s.sup fun (i : ι) => (f i)
              @[simp]
              theorem TopologicalSpace.Compacts.mem_singleton {α : Type u_1} [TopologicalSpace α] (x y : α) :
              x {y} x = y
              @[simp]
              theorem TopologicalSpace.Compacts.singleton_inj {α : Type u_1} [TopologicalSpace α] {x y : α} :
              {x} = {y} x = y
              def TopologicalSpace.Compacts.map {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) (hf : Continuous f) (K : Compacts α) :

              The image of a compact set under a continuous function.

              Equations
                Instances For
                  @[simp]
                  theorem TopologicalSpace.Compacts.coe_map {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Continuous f) (s : Compacts α) :
                  (Compacts.map f hf s) = f '' s
                  theorem TopologicalSpace.Compacts.map_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : βγ) (g : αβ) (hf : Continuous f) (hg : Continuous g) (K : Compacts α) :
                  Compacts.map (f g) K = Compacts.map f hf (Compacts.map g hg K)
                  @[simp]
                  theorem TopologicalSpace.Compacts.map_singleton {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Continuous f) (x : α) :
                  Compacts.map f hf {x} = {f x}

                  A homeomorphism induces an equivalence on compact sets, by taking the image.

                  Equations
                    Instances For
                      @[simp]
                      theorem TopologicalSpace.Compacts.equiv_apply {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : α ≃ₜ β) (K : Compacts α) :
                      (Compacts.equiv f) K = Compacts.map f K
                      @[simp]
                      theorem TopologicalSpace.Compacts.equiv_symm_apply {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : α ≃ₜ β) (K : Compacts β) :
                      theorem TopologicalSpace.Compacts.coe_equiv_apply_eq_preimage {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : α ≃ₜ β) (K : Compacts α) :
                      ((Compacts.equiv f) K) = f.symm ⁻¹' K

                      The image of a compact set under a homeomorphism can also be expressed as a preimage.

                      The product of two TopologicalSpace.Compacts, as a TopologicalSpace.Compacts in the product space.

                      Equations
                        @[reducible, inline, deprecated "Use `K ×ˢ L` instead" (since := "2025-11-15")]
                        abbrev TopologicalSpace.Compacts.prod {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (K : Compacts α) (L : Compacts β) :
                        Compacts (α × β)

                        The product of two TopologicalSpace.Compacts, as a TopologicalSpace.Compacts in the product space.

                        Equations
                          Instances For
                            @[simp]
                            theorem TopologicalSpace.Compacts.coe_prod {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (K : Compacts α) (L : Compacts β) :
                            ↑(K ×ˢ L) = K ×ˢ L
                            @[simp]
                            theorem TopologicalSpace.Compacts.singleton_prod_singleton {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (x : α) (y : β) :

                            Nonempty compact sets #

                            The type of nonempty compact sets of a topological space.

                            Instances For

                              See Note [custom simps projection].

                              Equations
                                Instances For

                                  Reinterpret a nonempty compact as a closed set.

                                  Equations
                                    Instances For
                                      theorem TopologicalSpace.NonemptyCompacts.ext {α : Type u_1} [TopologicalSpace α] {s t : NonemptyCompacts α} (h : s = t) :
                                      s = t
                                      @[simp]
                                      theorem TopologicalSpace.NonemptyCompacts.coe_mk {α : Type u_1} [TopologicalSpace α] (s : Compacts α) (h : s.carrier.Nonempty) :
                                      { toCompacts := s, nonempty' := h } = s
                                      @[simp]
                                      theorem TopologicalSpace.NonemptyCompacts.coe_sup {α : Type u_1} [TopologicalSpace α] (s t : NonemptyCompacts α) :
                                      (st) = s t

                                      In an inhabited space, the type of nonempty compact subsets is also inhabited, with default element the singleton set containing the default element.

                                      Equations
                                        def TopologicalSpace.NonemptyCompacts.map {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) (hf : Continuous f) (K : NonemptyCompacts α) :

                                        The image of a nonempty compact set under a continuous function.

                                        Equations
                                          Instances For
                                            @[simp]
                                            theorem TopologicalSpace.NonemptyCompacts.coe_map {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Continuous f) (s : NonemptyCompacts α) :
                                            (NonemptyCompacts.map f hf s) = f '' s
                                            theorem TopologicalSpace.NonemptyCompacts.map_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : βγ) (g : αβ) (hf : Continuous f) (hg : Continuous g) (K : NonemptyCompacts α) :
                                            @[simp]
                                            theorem TopologicalSpace.NonemptyCompacts.map_singleton {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Continuous f) (x : α) :
                                            @[reducible, inline, deprecated "Use `K ×ˢ L` instead" (since := "2025-11-15")]

                                            The product of two TopologicalSpace.NonemptyCompacts, as a TopologicalSpace.NonemptyCompacts in the product space.

                                            Equations
                                              Instances For
                                                @[simp]
                                                theorem TopologicalSpace.NonemptyCompacts.coe_prod {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (K : NonemptyCompacts α) (L : NonemptyCompacts β) :
                                                ↑(K ×ˢ L) = K ×ˢ L

                                                Positive compact sets #

                                                The type of compact sets with nonempty interior of a topological space. See also TopologicalSpace.Compacts and TopologicalSpace.NonemptyCompacts.

                                                Instances For

                                                  See Note [custom simps projection].

                                                  Equations
                                                    Instances For

                                                      Reinterpret a positive compact as a nonempty compact.

                                                      Equations
                                                        Instances For
                                                          theorem TopologicalSpace.PositiveCompacts.ext {α : Type u_1} [TopologicalSpace α] {s t : PositiveCompacts α} (h : s = t) :
                                                          s = t
                                                          @[simp]
                                                          theorem TopologicalSpace.PositiveCompacts.coe_mk {α : Type u_1} [TopologicalSpace α] (s : Compacts α) (h : (interior s.carrier).Nonempty) :
                                                          { toCompacts := s, interior_nonempty' := h } = s
                                                          @[simp]
                                                          theorem TopologicalSpace.PositiveCompacts.coe_sup {α : Type u_1} [TopologicalSpace α] (s t : PositiveCompacts α) :
                                                          (st) = s t
                                                          def TopologicalSpace.PositiveCompacts.map {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) (hf : Continuous f) (hf' : IsOpenMap f) (K : PositiveCompacts α) :

                                                          The image of a positive compact set under a continuous open map.

                                                          Equations
                                                            Instances For
                                                              @[simp]
                                                              theorem TopologicalSpace.PositiveCompacts.coe_map {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Continuous f) (hf' : IsOpenMap f) (s : PositiveCompacts α) :
                                                              (PositiveCompacts.map f hf hf' s) = f '' s
                                                              theorem TopologicalSpace.PositiveCompacts.map_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : βγ) (g : αβ) (hf : Continuous f) (hg : Continuous g) (hf' : IsOpenMap f) (hg' : IsOpenMap g) (K : PositiveCompacts α) :

                                                              In a nonempty locally compact space, there exists a compact set with nonempty interior.

                                                              @[reducible, inline, deprecated "Use `K ×ˢ L` instead" (since := "2025-11-15")]

                                                              The product of two TopologicalSpace.PositiveCompacts, as a TopologicalSpace.PositiveCompacts in the product space.

                                                              Equations
                                                                Instances For
                                                                  @[simp]
                                                                  theorem TopologicalSpace.PositiveCompacts.coe_prod {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (K : PositiveCompacts α) (L : PositiveCompacts β) :
                                                                  ↑(K ×ˢ L) = K ×ˢ L

                                                                  Compact open sets #

                                                                  The type of compact open sets of a topological space. This is useful in non-Hausdorff contexts, in particular spectral spaces.

                                                                  Instances For

                                                                    See Note [custom simps projection].

                                                                    Equations
                                                                      Instances For

                                                                        Reinterpret a compact open as an open.

                                                                        Equations
                                                                          Instances For

                                                                            Reinterpret a compact open as a clopen.

                                                                            Equations
                                                                              Instances For
                                                                                theorem TopologicalSpace.CompactOpens.ext {α : Type u_1} [TopologicalSpace α] {s t : CompactOpens α} (h : s = t) :
                                                                                s = t
                                                                                @[simp]
                                                                                theorem TopologicalSpace.CompactOpens.coe_mk {α : Type u_1} [TopologicalSpace α] (s : Compacts α) (h : IsOpen s.carrier) :
                                                                                { toCompacts := s, isOpen' := h } = s
                                                                                @[simp]
                                                                                theorem TopologicalSpace.CompactOpens.coe_sup {α : Type u_1} [TopologicalSpace α] (s t : CompactOpens α) :
                                                                                (st) = s t
                                                                                @[simp]
                                                                                theorem TopologicalSpace.CompactOpens.coe_finsetSup {α : Type u_1} [TopologicalSpace α] {ι : Type u_4} {f : ιCompactOpens α} {s : Finset ι} :
                                                                                (s.sup f) = is, (f i)
                                                                                @[simp]
                                                                                theorem TopologicalSpace.CompactOpens.coe_inf {α : Type u_1} [TopologicalSpace α] [QuasiSeparatedSpace α] (s t : CompactOpens α) :
                                                                                (st) = s t
                                                                                @[simp]
                                                                                theorem TopologicalSpace.CompactOpens.coe_sdiff {α : Type u_1} [TopologicalSpace α] [T2Space α] (s t : CompactOpens α) :
                                                                                ↑(s \ t) = s \ t
                                                                                @[simp]
                                                                                theorem TopologicalSpace.CompactOpens.coe_himp {α : Type u_1} [TopologicalSpace α] [CompactSpace α] [T2Space α] (s t : CompactOpens α) :
                                                                                ↑(s t) = s t
                                                                                def TopologicalSpace.CompactOpens.map {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) (hf : Continuous f) (hf' : IsOpenMap f) (s : CompactOpens α) :

                                                                                The image of a compact open under a continuous open map.

                                                                                Equations
                                                                                  Instances For
                                                                                    @[simp]
                                                                                    theorem TopologicalSpace.CompactOpens.toCompacts_map {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) (hf : Continuous f) (hf' : IsOpenMap f) (s : CompactOpens α) :
                                                                                    (map f hf hf' s).toCompacts = Compacts.map f hf s.toCompacts
                                                                                    @[deprecated TopologicalSpace.CompactOpens.toCompacts_map (since := "2025-11-13")]
                                                                                    theorem TopologicalSpace.CompactOpens.map_toCompacts {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) (hf : Continuous f) (hf' : IsOpenMap f) (s : CompactOpens α) :
                                                                                    (map f hf hf' s).toCompacts = Compacts.map f hf s.toCompacts

                                                                                    Alias of TopologicalSpace.CompactOpens.toCompacts_map.

                                                                                    @[simp]
                                                                                    theorem TopologicalSpace.CompactOpens.coe_map {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Continuous f) (hf' : IsOpenMap f) (s : CompactOpens α) :
                                                                                    (map f hf hf' s) = f '' s
                                                                                    @[simp]
                                                                                    theorem TopologicalSpace.CompactOpens.map_id {α : Type u_1} [TopologicalSpace α] (K : CompactOpens α) :
                                                                                    map id K = K
                                                                                    theorem TopologicalSpace.CompactOpens.map_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : βγ) (g : αβ) (hf : Continuous f) (hg : Continuous g) (hf' : IsOpenMap f) (hg' : IsOpenMap g) (K : CompactOpens α) :
                                                                                    map (f g) K = map f hf hf' (map g hg hg' K)
                                                                                    @[reducible, inline, deprecated "Use `K ×ˢ L` instead" (since := "2025-11-15")]

                                                                                    The product of two TopologicalSpace.CompactOpens, as a TopologicalSpace.CompactOpens in the product space.

                                                                                    Equations
                                                                                      Instances For
                                                                                        @[simp]
                                                                                        theorem TopologicalSpace.CompactOpens.coe_prod {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (K : CompactOpens α) (L : CompactOpens β) :
                                                                                        ↑(K ×ˢ L) = K ×ˢ L