Documentation

Mathlib.Topology.Sets.Order

Clopen upper sets #

In this file we define the type of clopen upper sets.

Compact open sets #

structure ClopenUpperSet (α : Type u_2) [TopologicalSpace α] [LE α] extends TopologicalSpace.Clopens α :
Type u_2

The type of clopen upper sets of a topological space.

Instances For
    def ClopenUpperSet.Simps.coe {α : Type u_1} [TopologicalSpace α] [LE α] (s : ClopenUpperSet α) :
    Set α

    See Note [custom simps projection].

    Equations
      Instances For

        Reinterpret an upper clopen as an upper set.

        Equations
          Instances For
            @[simp]
            theorem ClopenUpperSet.coe_toUpperSet {α : Type u_1} [TopologicalSpace α] [LE α] (s : ClopenUpperSet α) :
            s.toUpperSet = s
            theorem ClopenUpperSet.ext {α : Type u_1} [TopologicalSpace α] [LE α] {s t : ClopenUpperSet α} (h : s = t) :
            s = t
            theorem ClopenUpperSet.ext_iff {α : Type u_1} [TopologicalSpace α] [LE α] {s t : ClopenUpperSet α} :
            s = t s = t
            @[simp]
            theorem ClopenUpperSet.coe_mk {α : Type u_1} [TopologicalSpace α] [LE α] (s : TopologicalSpace.Clopens α) (h : IsUpperSet s.carrier) :
            { toClopens := s, upper' := h } = s
            @[simp]
            theorem ClopenUpperSet.coe_sup {α : Type u_1} [TopologicalSpace α] [LE α] (s t : ClopenUpperSet α) :
            (st) = s t
            @[simp]
            theorem ClopenUpperSet.coe_inf {α : Type u_1} [TopologicalSpace α] [LE α] (s t : ClopenUpperSet α) :
            (st) = s t
            @[simp]
            theorem ClopenUpperSet.coe_bot {α : Type u_1} [TopologicalSpace α] [LE α] :
            =