Documentation

Mathlib.Topology.Sheaves.PresheafOfFunctions

Presheaves of functions #

We construct some simple examples of presheaves of functions on a topological space.

def TopCat.presheafToTypes (X : TopCat) (T : โ†‘X โ†’ Type u_1) :
Presheaf (Type (max u_1 u_2)) X

The presheaf of dependently typed functions on X, with fibres given by a type family T. There is no requirement that the functions are continuous, here.

Equations
    Instances For
      @[simp]
      theorem TopCat.presheafToTypes_obj (X : TopCat) {T : โ†‘X โ†’ Type u_1} {U : (TopologicalSpace.Opens โ†‘X)แต’แต–} :
      (X.presheafToTypes T).obj U = ((x : โ†ฅ(Opposite.unop U)) โ†’ T โ†‘x)
      @[simp]
      theorem TopCat.presheafToTypes_map (X : TopCat) {T : โ†‘X โ†’ Type u_1} {U V : (TopologicalSpace.Opens โ†‘X)แต’แต–} {i : U โŸถ V} {f : (X.presheafToTypes T).obj U} :
      (X.presheafToTypes T).map i f = fun (x : โ†ฅ(Opposite.unop V)) => f (i.unop x)
      def TopCat.presheafToType (X : TopCat) (T : Type u_1) :
      Presheaf (Type (max u_1 u_2)) X

      The presheaf of functions on X with values in a type T. There is no requirement that the functions are continuous, here.

      Equations
        Instances For
          @[simp]
          theorem TopCat.presheafToType_obj (X : TopCat) {T : Type u_1} {U : (TopologicalSpace.Opens โ†‘X)แต’แต–} :
          (X.presheafToType T).obj U = (โ†ฅ(Opposite.unop U) โ†’ T)
          @[simp]
          theorem TopCat.presheafToType_map (X : TopCat) {T : Type u_1} {U V : (TopologicalSpace.Opens โ†‘X)แต’แต–} {i : U โŸถ V} {f : (X.presheafToType T).obj U} :
          (X.presheafToType T).map i f = f โˆ˜ โ‡‘i.unop

          The presheaf of continuous functions on X with values in fixed target topological space T.

          Equations
            Instances For