Documentation Verification Report

Homotopy

šŸ“ Source: Mathlib/CategoryTheory/Sites/Hypercover/Homotopy.lean

Statistics

MetricCount
DefinitionsHOneHypercover, cylinder, homotopicRel, toHOneHypercover, Homotopy, H, a, cylinder, cylinderHom, cylinderHomotopy, cylinderX, cylinderf, Homotopy, Homotopy, Homotopy, Homotopy, Homotopy
17
TheoremsinstNonempty, isCofiltered_of_hasPullbacks, cylinder_toPreOneHypercover, exists_nonempty_homotopy, mapMultiforkOfIsLimit_eq, map_eq_map, wl, wl_assoc, wr, wr_assoc, cylinderHom_hā‚€, cylinderHom_h₁, cylinderHom_sā‚€, cylinderHom_s₁, cylinder_Iā‚€, cylinder_I₁, cylinder_X, cylinder_Y, cylinder_f, cylinder_p₁, cylinder_pā‚‚, exists_nonempty_homotopy, sieveā‚€_cylinder, sieve₁'_cylinder, toPullback_cylinder
25
Total42

CategoryTheory.GrothendieckTopology

Definitions

NameCategoryTheorems
HOneHypercover šŸ“–CompOp
3 mathmath: HOneHypercover.instNonempty, CategoryTheory.PreOneHypercover.Homotopy.map_eq_map, HOneHypercover.isCofiltered_of_hasPullbacks

CategoryTheory.GrothendieckTopology.HOneHypercover

Theorems

NameKindAssumesProvesValidatesDepends On
instNonempty šŸ“–mathematical—CategoryTheory.GrothendieckTopology.HOneHypercover—CategoryTheory.GrothendieckTopology.OneHypercover.instNonempty
isCofiltered_of_hasPullbacks šŸ“–mathematical—CategoryTheory.IsCofiltered
CategoryTheory.GrothendieckTopology.HOneHypercover
CategoryTheory.Quotient.category
CategoryTheory.GrothendieckTopology.OneHypercover
CategoryTheory.GrothendieckTopology.OneHypercover.instCategory
CategoryTheory.GrothendieckTopology.OneHypercover.homotopicRel
—CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieveā‚€
CategoryTheory.Presieve.instHasPullbacksOfArrowsOfHasPullback
CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieveā‚€_1
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasPullbackHorizPaste
CategoryTheory.Limits.hasPullbackVertPaste
CategoryTheory.Presieve.instHasPullbacksOfHasPullbacks
CategoryTheory.IsPullback.instHasPullbackFst
CategoryTheory.Functor.map_surjective
CategoryTheory.Quotient.full_functor
CategoryTheory.GrothendieckTopology.OneHypercover.exists_nonempty_homotopy
CategoryTheory.Functor.map_comp
CategoryTheory.PreOneHypercover.Homotopy.map_eq_map
instNonempty

CategoryTheory.GrothendieckTopology.OneHypercover

Definitions

NameCategoryTheorems
cylinder šŸ“–CompOp
1 mathmath: cylinder_toPreOneHypercover
homotopicRel šŸ“–CompOp
2 mathmath: CategoryTheory.PreOneHypercover.Homotopy.map_eq_map, CategoryTheory.GrothendieckTopology.HOneHypercover.isCofiltered_of_hasPullbacks
toHOneHypercover šŸ“–CompOp
1 mathmath: CategoryTheory.PreOneHypercover.Homotopy.map_eq_map

Theorems

NameKindAssumesProvesValidatesDepends On
cylinder_toPreOneHypercover šŸ“–mathematical—toPreOneHypercover
cylinder
CategoryTheory.PreOneHypercover.cylinder
——
exists_nonempty_homotopy šŸ“–mathematical—CategoryTheory.PreOneHypercover.Homotopy
toPreOneHypercover
CategoryTheory.PreOneHypercover.Hom.comp
——

CategoryTheory.PreOneHypercover

Definitions

NameCategoryTheorems
Homotopy šŸ“–CompData
2 mathmath: CategoryTheory.GrothendieckTopology.OneHypercover.exists_nonempty_homotopy, exists_nonempty_homotopy
cylinder šŸ“–CompOp
15 mathmath: cylinder_X, cylinderHom_h₁, cylinder_Iā‚€, cylinder_f, cylinder_I₁, sieveā‚€_cylinder, sieve₁'_cylinder, toPullback_cylinder, CategoryTheory.GrothendieckTopology.OneHypercover.cylinder_toPreOneHypercover, cylinder_p₁, cylinder_pā‚‚, cylinderHom_s₁, cylinderHom_sā‚€, cylinderHom_hā‚€, cylinder_Y
cylinderHom šŸ“–CompOp
4 mathmath: cylinderHom_h₁, cylinderHom_s₁, cylinderHom_sā‚€, cylinderHom_hā‚€
cylinderHomotopy šŸ“–CompOp—
cylinderX šŸ“–CompOp
6 mathmath: cylinder_X, cylinderHom_h₁, toPullback_cylinder, cylinder_p₁, cylinder_pā‚‚, cylinder_Y
cylinderf šŸ“–CompOp
6 mathmath: cylinderHom_h₁, cylinder_f, toPullback_cylinder, cylinder_p₁, cylinder_pā‚‚, cylinder_Y

Theorems

NameKindAssumesProvesValidatesDepends On
cylinderHom_hā‚€ šŸ“–mathematical—CategoryTheory.PreZeroHypercover.Hom.hā‚€
toPreZeroHypercover
cylinder
Hom.toHom
cylinderHom
CategoryTheory.Limits.pullback.fst
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.Iā‚€
I₁
CategoryTheory.PreZeroHypercover.Hom.sā‚€
Y
CategoryTheory.Limits.pullback
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Limits.pullback.lift
toPullback
——
cylinderHom_h₁ šŸ“–mathematical—Hom.h₁
cylinder
cylinderHom
CategoryTheory.Limits.pullback.snd
CategoryTheory.Limits.pullback
cylinderX
CategoryTheory.PreZeroHypercover.Iā‚€
toPreZeroHypercover
I₁
CategoryTheory.PreZeroHypercover.Hom.sā‚€
Hom.toHom
cylinderf
Y
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Limits.pullback.map
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback.lift
CategoryTheory.PreZeroHypercover.Hom.hā‚€
toPullback
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
p₁
pā‚‚
——
cylinderHom_sā‚€ šŸ“–mathematical—CategoryTheory.PreZeroHypercover.Hom.sā‚€
toPreZeroHypercover
cylinder
Hom.toHom
cylinderHom
CategoryTheory.PreZeroHypercover.Iā‚€
I₁
——
cylinderHom_s₁ šŸ“–mathematical—Hom.s₁
cylinder
cylinderHom
I₁
CategoryTheory.PreZeroHypercover.Iā‚€
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.Hom.sā‚€
Hom.toHom
——
cylinder_Iā‚€ šŸ“–mathematical—CategoryTheory.PreZeroHypercover.Iā‚€
toPreZeroHypercover
cylinder
I₁
CategoryTheory.PreZeroHypercover.Hom.sā‚€
Hom.toHom
——
cylinder_I₁ šŸ“–mathematical—I₁
cylinder
CategoryTheory.PreZeroHypercover.Iā‚€
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.Hom.sā‚€
Hom.toHom
——
cylinder_X šŸ“–mathematical—CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
cylinder
cylinderX
CategoryTheory.PreZeroHypercover.Iā‚€
I₁
CategoryTheory.PreZeroHypercover.Hom.sā‚€
Hom.toHom
——
cylinder_Y šŸ“–mathematical—Y
cylinder
CategoryTheory.Limits.pullback
cylinderX
CategoryTheory.PreZeroHypercover.Iā‚€
toPreZeroHypercover
I₁
CategoryTheory.PreZeroHypercover.Hom.sā‚€
Hom.toHom
cylinderf
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Limits.pullback.map
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback.lift
CategoryTheory.PreZeroHypercover.Hom.hā‚€
toPullback
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
p₁
pā‚‚
——
cylinder_f šŸ“–mathematical—CategoryTheory.PreZeroHypercover.f
toPreZeroHypercover
cylinder
cylinderf
CategoryTheory.PreZeroHypercover.Iā‚€
I₁
CategoryTheory.PreZeroHypercover.Hom.sā‚€
Hom.toHom
——
cylinder_p₁ šŸ“–mathematical—p₁
cylinder
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
cylinderX
CategoryTheory.PreZeroHypercover.Iā‚€
toPreZeroHypercover
I₁
CategoryTheory.PreZeroHypercover.Hom.sā‚€
Hom.toHom
cylinderf
Y
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Limits.pullback.map
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback.lift
CategoryTheory.PreZeroHypercover.Hom.hā‚€
toPullback
CategoryTheory.CategoryStruct.id
pā‚‚
——
cylinder_pā‚‚ šŸ“–mathematical—pā‚‚
cylinder
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
cylinderX
CategoryTheory.PreZeroHypercover.Iā‚€
toPreZeroHypercover
I₁
CategoryTheory.PreZeroHypercover.Hom.sā‚€
Hom.toHom
cylinderf
Y
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Limits.pullback.map
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback.lift
CategoryTheory.PreZeroHypercover.Hom.hā‚€
toPullback
CategoryTheory.CategoryStruct.id
p₁
CategoryTheory.Limits.pullback.snd
——
exists_nonempty_homotopy šŸ“–mathematical—Homotopy
Hom.comp
——
sieveā‚€_cylinder šŸ“–mathematical—CategoryTheory.PreZeroHypercover.sieveā‚€
toPreZeroHypercover
cylinder
CategoryTheory.Sieve.generate
CategoryTheory.Presieve.bindOfArrows
CategoryTheory.PreZeroHypercover.Iā‚€
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.pullback
CategoryTheory.Limits.pullback
CategoryTheory.PreZeroHypercover.Hom.sā‚€
Hom.toHom
CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieveā‚€
CategoryTheory.Presieve.instHasPullbacksOfArrowsOfHasPullback
CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieveā‚€_1
CategoryTheory.Presieve.instHasPullbackOfHasPairwisePullbacksOfArrows
CategoryTheory.Presieve.instHasPairwisePullbacksOfHasPullbacks
CategoryTheory.Presieve.ofArrows
CategoryTheory.Limits.pullback.lift
CategoryTheory.PreZeroHypercover.Hom.hā‚€
sieve₁'
—le_antisymm
CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieveā‚€
CategoryTheory.Presieve.instHasPullbacksOfArrowsOfHasPullback
CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieveā‚€_1
CategoryTheory.Presieve.instHasPullbackOfHasPairwisePullbacksOfArrows
CategoryTheory.Presieve.instHasPairwisePullbacksOfHasPullbacks
CategoryTheory.PreZeroHypercover.sieveā‚€.eq_1
CategoryTheory.Sieve.generate_le_iff
CategoryTheory.Limits.pullback.condition
CategoryTheory.Sieve.downward_closed
CategoryTheory.Category.id_comp
w
CategoryTheory.Limits.limit.lift_Ļ€_assoc
sieve₁'_cylinder šŸ“–mathematical—sieve₁'
cylinder
CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieveā‚€
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Presieve.instHasPullbacksOfArrowsOfHasPullback
CategoryTheory.PreZeroHypercover.Iā‚€
CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieveā‚€_1
CategoryTheory.Presieve.instHasPullbackOfHasPairwisePullbacksOfArrows
CategoryTheory.Presieve.instHasPairwisePullbacksOfHasPullbacks
CategoryTheory.Presieve.ofArrows
CategoryTheory.Sieve.pullback
CategoryTheory.Limits.pullback
I₁
CategoryTheory.PreZeroHypercover.Hom.sā‚€
Hom.toHom
Y
CategoryTheory.Limits.pullback.lift
CategoryTheory.PreZeroHypercover.Hom.hā‚€
toPullback
CategoryTheory.Limits.pullback.map
CategoryTheory.Limits.pullback.fst
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
—le_antisymm
CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieveā‚€
CategoryTheory.Presieve.instHasPullbacksOfArrowsOfHasPullback
CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieveā‚€_1
CategoryTheory.Presieve.instHasPullbackOfHasPairwisePullbacksOfArrows
CategoryTheory.Presieve.instHasPairwisePullbacksOfHasPullbacks
sieve₁'.eq_1
CategoryTheory.Sieve.ofArrows.eq_1
CategoryTheory.Sieve.generate_le_iff
toPullback_cylinder
CategoryTheory.Limits.pullback.condition
w
CategoryTheory.Sieve.pullbackArrows_comm
CategoryTheory.Presieve.hasPullback
CategoryTheory.Limits.hasPullback_symmetry
CategoryTheory.Sieve.downward_closed
toPullback_cylinder šŸ“–mathematical—toPullback
cylinder
CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieveā‚€
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Presieve.instHasPullbacksOfArrowsOfHasPullback
CategoryTheory.PreZeroHypercover.Iā‚€
CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieveā‚€_1
CategoryTheory.Presieve.instHasPullbackOfHasPairwisePullbacksOfArrows
CategoryTheory.Presieve.instHasPairwisePullbacksOfHasPullbacks
CategoryTheory.Presieve.ofArrows
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback
cylinderX
I₁
CategoryTheory.PreZeroHypercover.Hom.sā‚€
Hom.toHom
cylinderf
Y
CategoryTheory.Limits.pullback.map
CategoryTheory.Limits.pullback.lift
CategoryTheory.PreZeroHypercover.Hom.hā‚€
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
p₁
pā‚‚
—CategoryTheory.Limits.pullback.hom_ext
CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieveā‚€
CategoryTheory.Presieve.instHasPullbacksOfArrowsOfHasPullback
CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieveā‚€_1
CategoryTheory.Presieve.instHasPullbackOfHasPairwisePullbacksOfArrows
CategoryTheory.Presieve.instHasPairwisePullbacksOfHasPullbacks
w
CategoryTheory.Limits.limit.lift_Ļ€

CategoryTheory.PreOneHypercover.Homotopy

Definitions

NameCategoryTheorems
H šŸ“–CompOp
4 mathmath: wl, wl_assoc, wr, wr_assoc
a šŸ“–CompOp
4 mathmath: wl, wl_assoc, wr, wr_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
mapMultiforkOfIsLimit_eq šŸ“–mathematical—CategoryTheory.PreOneHypercover.Hom.mapMultiforkOfIsLimit—CategoryTheory.Limits.Multifork.IsLimit.hom_ext
CategoryTheory.Limits.Multifork.condition
CategoryTheory.PreOneHypercover.Hom.mapMultiforkOfIsLimit_ι
wl
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
wr
map_eq_map šŸ“–mathematical—CategoryTheory.Functor.map
CategoryTheory.GrothendieckTopology.OneHypercover
CategoryTheory.GrothendieckTopology.OneHypercover.instCategory
CategoryTheory.GrothendieckTopology.HOneHypercover
CategoryTheory.Quotient.category
CategoryTheory.GrothendieckTopology.OneHypercover.homotopicRel
CategoryTheory.GrothendieckTopology.OneHypercover.toHOneHypercover
—CategoryTheory.Quotient.sound
wl šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.PreOneHypercover.Y
CategoryTheory.PreZeroHypercover.Hom.sā‚€
CategoryTheory.PreOneHypercover.Hom.toHom
H
a
CategoryTheory.PreOneHypercover.p₁
CategoryTheory.PreZeroHypercover.Hom.hā‚€
——
wl_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.PreOneHypercover.Y
CategoryTheory.PreZeroHypercover.Hom.sā‚€
CategoryTheory.PreOneHypercover.Hom.toHom
H
a
CategoryTheory.PreOneHypercover.p₁
CategoryTheory.PreZeroHypercover.Hom.hā‚€
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
wl
wr šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.PreOneHypercover.Y
CategoryTheory.PreZeroHypercover.Hom.sā‚€
CategoryTheory.PreOneHypercover.Hom.toHom
H
a
CategoryTheory.PreOneHypercover.pā‚‚
CategoryTheory.PreZeroHypercover.Hom.hā‚€
——
wr_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.PreOneHypercover.Y
CategoryTheory.PreZeroHypercover.Hom.sā‚€
CategoryTheory.PreOneHypercover.Hom.toHom
H
a
CategoryTheory.PreOneHypercover.pā‚‚
CategoryTheory.PreZeroHypercover.Hom.hā‚€
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
wr

CategoryTheory.ShortComplex

Definitions

NameCategoryTheorems
Homotopy šŸ“–CompData
3 mathmath: Homotopy.equivSubZero_symm_apply, HomotopyEquiv.ext_iff, Homotopy.equivSubZero_apply

ContinuousMap

Definitions

NameCategoryTheorems
Homotopy šŸ“–CompData
27 mathmath: Homotopy.apply_zero_path, Homotopy.evalAt_eq, Homotopy.ulift_apply, Homotopy.cast_apply, Path.toHomotopyConst_apply, Homotopy.compContinuousMap_apply, Homotopy.comp_apply, Homotopy.symm_bijective, Homotopy.apply_one_path, Homotopy.instHomotopyLike, Homotopy.extend_apply_coe, Homotopy.evalAt_apply, Homotopy.symm_apply, Homotopy.trans_apply, Homotopy.curry_apply, Homotopy.extend_apply_of_mem_I, Homotopy.continuous, Homotopy.affine_apply, Homotopy.coe_toContinuousMap, Homotopy.apply_zero, Homotopy.prod_apply, Homotopy.apply_one, Homotopy.congr_fun, Homotopy.ext_iff, HomotopyWith.coe_toHomotopy, Homotopy.refl_apply, Homotopy.congr_arg

Path

Definitions

NameCategoryTheorems
Homotopy šŸ“–CompOp
10 mathmath: Homotopy.symm_bijective, Homotopy.map_apply, Homotopy.target, Homotopy.hcomp_half, Homotopy.hcomp_apply, Homotopy.trans_apply, Homotopy.coeFn_injective, Homotopy.source, Homotopy.symmā‚‚_apply, isSimplyConnected_iff_exists_homotopy_refl_forall_mem

SSet.RelativeMorphism

Definitions

NameCategoryTheorems
Homotopy šŸ“–CompData—

(root)

Definitions

NameCategoryTheorems
Homotopy šŸ“–CompData
12 mathmath: CochainComplex.IsKInjective.nonempty_homotopy_zero, HomotopyCategory.isZero_quotient_obj_iff, CochainComplex.IsKProjective.homotopyZero_def, CategoryTheory.Functor.mapHomotopyEquiv_homotopyHomInvId, HomotopyCategory.quotient_map_eq_zero_iff, HomologicalComplex.homotopyCofiber.descSigma_ext_iff, CochainComplex.IsKInjective.homotopyZero_def, CochainComplex.IsKProjective.nonempty_homotopy_zero, CochainComplex.HomComplex.Cochain.equivHomotopy_apply_of_eq, CategoryTheory.Functor.mapHomotopyEquiv_homotopyInvHomId, CochainComplex.HomComplex.Cochain.equivHomotopy_apply_coe, CochainComplex.HomComplex.Cochain.equivHomotopy_symm_apply_hom

---

← Back to Index