Documentation

Mathlib.CategoryTheory.Sites.Hypercover.Homotopy

The category of 1-hypercovers up to homotopy #

In this file we define the category of 1-hypercovers up to homotopy. This is the category of 1-hypercovers, but where morphisms are considered up to existence of a homotopy.

Main definitions #

Main results #

structure CategoryTheory.PreOneHypercover.Homotopy {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} (f g : E.Hom F) :
Type (max (max v w) w')

A homotopy of refinements E ⟶ F is a family of morphisms Xᵢ ⟶ Yₐ where Yₐ is a component of the cover of X_{f(i)} ×[S] X_{g(i)}.

Instances For
    @[simp]
    theorem CategoryTheory.PreOneHypercover.Homotopy.wl_assoc {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} {f g : E.Hom F} (self : Homotopy f g) (i : E.I₀) {Z : C} (h : F.X (f.s₀ i) Z) :
    @[simp]
    theorem CategoryTheory.PreOneHypercover.Homotopy.wr_assoc {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} {f g : E.Hom F} (self : Homotopy f g) (i : E.I₀) {Z : C} (h : F.X (g.s₀ i) Z) :

    Homotopic refinements induce the same map on multiequalizers.

    @[reducible, inline]
    noncomputable abbrev CategoryTheory.PreOneHypercover.cylinderX {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} [Limits.HasPullbacks C] (f g : E.Hom F) {i : E.I₀} (k : F.I₁ (f.s₀ i) (g.s₀ i)) :
    C

    (Implementation): The covering object of cylinder f g.

    Equations
      Instances For
        @[reducible, inline]
        noncomputable abbrev CategoryTheory.PreOneHypercover.cylinderf {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} [Limits.HasPullbacks C] (f g : E.Hom F) {i : E.I₀} (k : F.I₁ (f.s₀ i) (g.s₀ i)) :
        cylinderX f g k S

        (Implementation): The structure morphisms of the covering objects of cylinder f g.

        Equations
          Instances For

            Given two refinement morphisms f, g : E ⟶ F, this is a (pre-)1-hypercover W that admits a morphism h : W ⟶ E such that h ≫ f and h ≫ g are homotopic. Hence they become equal after quotienting out by homotopy. This is a 1-hypercover, if E and F are (see OneHypercover.cylinder).

            Equations
              Instances For
                @[simp]
                theorem CategoryTheory.PreOneHypercover.cylinder_f {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} [Limits.HasPullbacks C] (f g : E.Hom F) (p : (i : E.I₀) × F.I₁ (f.s₀ i) (g.s₀ i)) :
                (cylinder f g).f p = cylinderf f g p.snd
                @[simp]
                theorem CategoryTheory.PreOneHypercover.cylinder_I₁ {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} [Limits.HasPullbacks C] (f g : E.Hom F) (p q : (i : E.I₀) × F.I₁ (f.s₀ i) (g.s₀ i)) :
                @[simp]
                theorem CategoryTheory.PreOneHypercover.cylinder_X {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} [Limits.HasPullbacks C] (f g : E.Hom F) (p : (i : E.I₀) × F.I₁ (f.s₀ i) (g.s₀ i)) :
                (cylinder f g).X p = cylinderX f g p.snd
                @[simp]
                theorem CategoryTheory.PreOneHypercover.cylinder_I₀ {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} [Limits.HasPullbacks C] (f g : E.Hom F) :
                (cylinder f g).I₀ = ((i : E.I₀) × F.I₁ (f.s₀ i) (g.s₀ i))
                noncomputable def CategoryTheory.PreOneHypercover.cylinderHom {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} [Limits.HasPullbacks C] (f g : E.Hom F) :
                (cylinder f g).Hom E

                (Implementation): The refinement morphism cylinder f g ⟶ E.

                Equations
                  Instances For
                    @[simp]
                    theorem CategoryTheory.PreOneHypercover.cylinderHom_s₁ {C : Type u} [Category.{v, u} C] {S : C} {E : PreOneHypercover S} {F : PreOneHypercover S} [Limits.HasPullbacks C] (f g : E.Hom F) {i✝ j✝ : (cylinder f g).I₀} (k : (cylinder f g).I₁ i✝ j✝) :

                    (Implementation): The homotopy of the morphisms cylinder f g ⟶ E ⟶ F.

                    Equations
                      Instances For

                        Up to homotopy, the category of (pre-)1-hypercovers is cofiltered.

                        Given two refinement morphism f, g : E ⟶ F, this is a 1-hypercover W that admits a morphism h : W ⟶ E such that h ≫ f and h ≫ g are homotopic. Hence they become equal after quotienting out by homotopy.

                        Equations
                          Instances For

                            Up to homotopy, the category of 1-hypercovers is cofiltered.

                            Two refinement morphisms of 1-hypercovers are homotopic if there exists a homotopy between them. Note: This is not an equivalence relation, it is not even reflexive!

                            Equations
                              Instances For
                                @[reducible, inline]
                                abbrev CategoryTheory.GrothendieckTopology.HOneHypercover {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (S : C) :
                                Type (max (max u v) (u_1 + 1))

                                The category of 1-hypercovers with refinement morphisms up to homotopy.

                                Equations
                                  Instances For
                                    @[reducible, inline]

                                    The canonical projection from 1-hypercovers to 1-hypercovers up to homotopy.

                                    Equations
                                      Instances For

                                        If C has pullbacks, the category of 1-hypercovers up to homotopy is cofiltered.