Documentation Verification Report

W

šŸ“ Source: Mathlib/Data/PFunctor/Multivariate/W.lean

Statistics

MetricCount
DefinitionsW, W, W, W, W, W, W, WPath, inhabited, mvfunctorW, objAppend1, wDest', wMap, wMk, wMk', wPathCasesOn, wPathDestLeft, wPathDestRight, wRec, wp, wpMk, wpRec, W, W
24
Theoremscomp_wPathCasesOn, map_objAppend1, wDest'_wMk, wDest'_wMk', wMk_eq, wPathCasesOn_eta, wPathDestLeft_wPathCasesOn, wPathDestRight_wPathCasesOn, wRec_eq, w_cases, w_ind, w_map_wMk, wpRec_eq, wp_ind
14
Total38

CategoryTheory.GrothendieckTopology

Definitions

NameCategoryTheorems
W šŸ“–CompOp
21 mathmath: W_sheafToPresheaf_map_iff_isIso, W_of_isLocallyBijective, W_eq_inverseImage_isomorphisms, W.transport_isMonoidal, W_iff_isIso_map_of_adjunction, W_isInvertedBy_whiskeringRight_presheafToSheaf, PreservesSheafification.le, W_adj_unit_app, WEqualsLocallyBijective.iff, W_inverseImage_whiskeringLeft, Point.W_isInvertedBy_presheafFiber, W.monoidal, W_whiskerLeft_iff, instIsLocalizationFunctorOppositeSheafPresheafToSheafW, W_iff, W_eq_inverseImage_isomorphisms_of_adjunction, W_toSheafify, W_eq_isLocal_range_sheafToPresheaf_obj, W_eq_W_range_sheafToPresheaf_obj, LightCondensed.instIsMonoidalFunctorOppositeLightProfiniteModuleCatWCoherentTopology, W_iff_isLocallyBijective

CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram

Definitions

NameCategoryTheorems
W šŸ“–CompOp
12 mathmath: CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.D₁_W, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.DiagramWithUniqueTerminal.ext_iff, IsTerminal.hlift, ext_iff, iSup_W, IsTerminal.prop_id, single_W, hW, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dā‚ƒ_W, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dā‚„_W, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dā‚‚_W, sup_W

CategoryTheory.IsRegularEpi

Definitions

NameCategoryTheorems
W šŸ“–CompOp
1 mathmath: w

CategoryTheory.Localization.LeftBousfield

Definitions

NameCategoryTheorems
W šŸ“–CompOp—

CategoryTheory.NormalEpi

Definitions

NameCategoryTheorems
W šŸ“–CompOp
1 mathmath: w

CategoryTheory.RegularEpi

Definitions

NameCategoryTheorems
W šŸ“–CompOp
2 mathmath: w, w_assoc

MvPFunctor

Definitions

NameCategoryTheorems
W šŸ“–CompOp
8 mathmath: wDest'_wMk, MvQPF.Fix.ind_aux, w_map_wMk, MvQPF.recF_eq', map_objAppend1, MvQPF.wrepr_wMk, MvQPF.recF_eq, MvQPF.wEquiv_map
WPath šŸ“–CompData
1 mathmath: comp_wPathCasesOn
mvfunctorW šŸ“–CompOp
2 mathmath: w_map_wMk, MvQPF.wEquiv_map
objAppend1 šŸ“–CompOp
1 mathmath: map_objAppend1
wDest' šŸ“–CompOp
3 mathmath: wDest'_wMk', wDest'_wMk, MvQPF.recF_eq'
wMap šŸ“–CompOp
1 mathmath: map_objAppend1
wMk šŸ“–CompOp
7 mathmath: wDest'_wMk, wMk_eq, MvQPF.Fix.ind_aux, w_map_wMk, wRec_eq, MvQPF.wrepr_wMk, MvQPF.recF_eq
wMk' šŸ“–CompOp
2 mathmath: wDest'_wMk', MvQPF.wrepr_wMk
wPathCasesOn šŸ“–CompOp
5 mathmath: wPathDestLeft_wPathCasesOn, wMk_eq, wPathCasesOn_eta, comp_wPathCasesOn, wPathDestRight_wPathCasesOn
wPathDestLeft šŸ“–CompOp
2 mathmath: wPathDestLeft_wPathCasesOn, wPathCasesOn_eta
wPathDestRight šŸ“–CompOp
3 mathmath: wpRec_eq, wPathCasesOn_eta, wPathDestRight_wPathCasesOn
wRec šŸ“–CompOp
1 mathmath: wRec_eq
wp šŸ“–CompOp
1 mathmath: wMk_eq
wpMk šŸ“–CompOp—
wpRec šŸ“–CompOp
1 mathmath: wpRec_eq

Theorems

NameKindAssumesProvesValidatesDepends On
comp_wPathCasesOn šŸ“–mathematical—TypeVec.comp
WPath
PFunctor.A
last
PFunctor.B
wPathCasesOn
B
drop
—TypeVec.Arrow.ext
map_objAppend1 šŸ“–mathematical—MvFunctor.map
Obj
instMvFunctorObj
TypeVec.append1
W
TypeVec.appendFun
wMap
objAppend1
TypeVec.comp
B
drop
—objAppend1.eq_1
map_eq
TypeVec.appendFun.eq_1
TypeVec.splitFun_comp
wDest'_wMk šŸ“–mathematical—wDest'
wMk
A
TypeVec.Arrow
B
TypeVec.append1
W
TypeVec.splitFun
—wDest'.eq_1
wRec_eq
wDest'_wMk' šŸ“–mathematical—wDest'
wMk'
—wMk'.eq_1
wDest'_wMk
TypeVec.split_dropFun_lastFun
wMk_eq šŸ“–mathematical—wMk
A
wp
TypeVec.Arrow
B
PFunctor.A
last
PFunctor.B
wPathCasesOn
——
wPathCasesOn_eta šŸ“–mathematical—wPathCasesOn
wPathDestLeft
wPathDestRight
—TypeVec.Arrow.ext
wPathDestLeft_wPathCasesOn šŸ“–mathematical—wPathDestLeft
wPathCasesOn
——
wPathDestRight_wPathCasesOn šŸ“–mathematical—wPathDestRight
wPathCasesOn
——
wRec_eq šŸ“–mathematical—wRec
wMk
——
w_cases šŸ“–ā€”wMk——w_ind
w_ind šŸ“–ā€”wMk——wp_ind
wPathCasesOn_eta
w_map_wMk šŸ“–mathematical—MvFunctor.map
W
mvfunctorW
wMk
TypeVec.comp
B
drop
—wMk_eq
map_eq
comp_wPathCasesOn
wpRec_eq šŸ“–mathematical—wpRec
PFunctor.A
last
PFunctor.B
wPathDestRight
——
wp_ind šŸ“–ā€”PFunctor.A
last
PFunctor.B
———

MvPFunctor.WPath

Definitions

NameCategoryTheorems
inhabited šŸ“–CompOp—

PFunctor

Definitions

NameCategoryTheorems
W šŸ“–CompOp
3 mathmath: QPF.recF_eq', QPF.Fix.ind_aux, QPF.recF_eq

Real.Wallis

Definitions

NameCategoryTheorems
W šŸ“–CompOp
9 mathmath: W_le, tendsto_W_nhds_pi_div_two, W_eq_integral_sin_pow_div_integral_sin_pow, W_eq_factorial_ratio, Stirling.stirlingSeq_pow_four_div_stirlingSeq_pow_two_eq, W_succ, W_pos, Stirling.second_wallis_limit, le_W

---

← Back to Index