Documentation Verification Report

FG

πŸ“ Source: Mathlib/RingTheory/Adjoin/FG.lean

Statistics

MetricCount
DefinitionsFG, FG, FG, FG, FG, FG, FG, FG, FG, FG, FG, FG, FG, FG, FG, FG, FG, FG
18
TheoremsisNoetherianRing_range, fg_trans, FG, map, prod, sup, fg_adjoin_finset, fg_bot, fg_def, fg_of_fg_map, fg_of_fg_toSubmodule, fg_of_noetherian, fg_of_submodule_fg, fg_top, induction_on_adjoin, FG, isNoetherianRing_of_fg, is_noetherian_subring_closure
18
Total36

AddGroup

Definitions

NameCategoryTheorems
FG πŸ“–CompData
19 mathmath: closure_finite_fg, fg_of_surjective, fg_iff', Prod.instAddGroupFG, fg_iff, fg_iff_mul_fg, QuotientAddGroup.fg, GroupFG.iff_add_fg, AddMonoidAlgebra.finiteType_iff_group_fg, fg_def, fg_iff_addMonoid_fg, fg_iff_addSubgroup_fg, fg_of_finite, fg_iff_exists_freeAddGroup_hom_surjective, instFGInt, closure_finset_fg, fg_range, Module.Finite.iff_addGroup_fg, fg_of_group_fg

AddMonoid

Definitions

NameCategoryTheorems
FG πŸ“–CompData
26 mathmath: closure_finite_fg, fg_iff, FreeAbelianGroup.instFG, Algebra.GrothendieckAddGroup.instFG, AddLocalization.fg, closure_finset_fg, fg_of_monoid_fg, fg_of_finite, fG_iff, AddGroup.fg_iff_addMonoid_fg, fg_iff_exists_freeAddMonoid_hom_surjective, Monoid.fg_iff_add_fg, fg_range, multiples_fg, fg_def, fg_of_addGroup_fg, IsAffineAddMonoid.toFG, AddMonoidAlgebra.fg_of_finiteType, fg_iff_addSubmonoid_fg, AddMonoidAlgebra.finiteType_iff_fg, instFGNat, AddCommMonoid.fg_of_wellQuasiOrderedLE, Module.Finite.iff_addMonoid_fg, fg_of_surjective, Prod.instAddMonoidFG, fg_iff_mul_fg

AddSemigroupIdeal

Definitions

NameCategoryTheorems
FG πŸ“–MathDef
2 mathmath: fg_of_wellQuasiOrderedLE, fg_iff

AddSubgroup

Definitions

NameCategoryTheorems
FG πŸ“–MathDef
11 mathmath: fg_iff_addSubmonoid_fg, Subgroup.fg_iff_add_fg, fg_iff, AddGroup.FG.out, AddGroup.fg_def, Submodule.fg_iff_addSubgroup_fg, AddGroup.fg_iff_addSubgroup_fg, Submodule.fg_iff_add_subgroup_fg, fg_iff_mul_fg, FG.bot, fg_iff_exists_fin_addMonoidHom

AddSubmonoid

Definitions

NameCategoryTheorems
FG πŸ“–MathDef
19 mathmath: Submonoid.fg_iff_add_fg, IsLinearSet.exists_fg_eq_subtypeVal, IsSemilinearSet.exists_fg_eq_subtypeVal, AddSubgroup.fg_iff_addSubmonoid_fg, fg_of_subtractive, fg_eqLocusM, AddMonoid.FG.fg_top, fg_iff, fg_iff_exists_fin_addMonoidHom, IsSemilinearSet.exists_fg_eq_subtypeValβ‚‚, AddMonoid.fG_iff, FG.bot, multiples_fg, AddMonoid.fg_def, Submodule.fg_iff_addSubmonoid_fg, isLinearSet_iff_exists_fg_eq_vadd, Nat.addSubmonoid_fg, AddMonoid.fg_iff_addSubmonoid_fg, fg_iff_mul_fg

AlgHom

Theorems

NameKindAssumesProvesValidatesDepends On
isNoetherianRing_range πŸ“–mathematicalβ€”IsNoetherianRing
Subalgebra
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Subalgebra.instSetLike
range
Subalgebra.toSemiring
β€”isNoetherianRing_range

Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
fg_trans πŸ“–mathematicalSubmodule.FG
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toModule
DFunLike.coe
OrderEmbedding
Subalgebra
Submodule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
adjoin
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.toCommSemiring
Subalgebra.toAlgebra
id
Set
Set.instUnion
β€”Submodule.fg_def
Set.Finite.mul
le_antisymm
Submodule.span_le
Set.mul_subset_iff
Subalgebra.mul_mem
Submodule.subset_span
adjoin_mono
Set.subset_union_left
IsScalarTower.subalgebra'
IsScalarTower.right
adjoin_union_eq_adjoin_adjoin
Finsupp.mem_span_image_iff_linearCombination
Set.image_id
Finsupp.linearCombination_apply
Finsupp.sum.eq_1
sum_mem
Submodule.addSubmonoidClass
Finsupp.sum_mul
smul_mul_assoc
Submodule.smul_mem

FirstOrder.Language.IsFraisse

Theorems

NameKindAssumesProvesValidatesDepends On
FG πŸ“–mathematicalCategoryTheory.Bundled
FirstOrder.Language.Structure
Set
Set.instMembership
FirstOrder.Language.Structure.FG
CategoryTheory.Bundled.Ξ±
CategoryTheory.Bundled.structure
β€”β€”

FirstOrder.Language.Structure

Definitions

NameCategoryTheorems
FG πŸ“–CompData
9 mathmath: FirstOrder.Language.Equiv.fg_iff, fg_def, fg_iff_finite, FirstOrder.Language.Substructure.fg_iff_structure_fg, FG.map_of_surjective, FirstOrder.Language.exists_countable_is_age_of_iff, FirstOrder.Language.IsFraisse.FG, FG.of_finite, fg_iff

FirstOrder.Language.Substructure

Definitions

NameCategoryTheorems
FG πŸ“–MathDef
20 mathmath: FirstOrder.Language.IsExtensionPair.cod, FirstOrder.Language.Structure.fg_def, fg_closure_singleton, FirstOrder.Language.PartialEquiv.dom_fg_iff_cod_fg, fg_closure, FirstOrder.Language.embedding_from_cg, fg_iff_structure_fg, fg_def, FirstOrder.Language.isExtensionPair_iff_cod, fg_iff_exists_fin_generating_family, FirstOrder.Language.equiv_between_cg, FirstOrder.Language.age.has_representative_as_substructure, instCountable_fg_substructures_of_countable, FirstOrder.Language.Structure.FG.range, FirstOrder.Language.FGEquiv.symm_coe, FG.of_finite, FirstOrder.Language.Structure.FG.out, fg_bot, countable_fg_substructures_of_countable, fg_iff_finite

Group

Definitions

NameCategoryTheorems
FG πŸ“–CompData
20 mathmath: fg_def, AddGroup.fg_iff_mul_fg, fg_of_surjective, Subgroup.fg_of_index_ne_zero, fg_iff, GroupFG.iff_add_fg, fg_of_mul_group_fg, MonoidAlgebra.finiteType_iff_group_fg, QuotientGroup.fg, Subgroup.instFGSubtypeMemCommutator, fg_iff_monoid_fg, fg_iff_subgroup_fg, fg_iff', Prod.instGroupFG, closure_finset_fg, fg_of_finite, fg_iff_exists_freeGroup_hom_surjective, closureCommutatorRepresentatives_fg, fg_range, closure_finite_fg

Ideal

Definitions

NameCategoryTheorems
FG πŸ“–MathDef
19 mathmath: fg_of_isNoetherianRing, FractionalIdeal.coeIdeal_fg, KaehlerDifferential.ideal_fg, isNoetherianRing_iff_ideal_fg, Algebra.FinitePresentation.ker_fg_of_mvPolynomial, isOka_fg, Algebra.FinitePresentation.ker_fG_of_surjective, Algebra.FinitePresentation.iff, fg_top, Algebra.Presentation.fg_ker, Polynomial.contentIdeal_FG, fg_of_isUnit, PowerSeries.fg_iff_of_isPrime, FG.of_isNoetherianRing, Algebra.Generators.fg_ker_of_finitePresentation, Algebra.FinitePresentation.out, IsSemiprimaryRing.isNoetherianRing_iff_jacobson_fg, PrimeSpectrum.isCompact_isOpen_iff_ideal, Algebra.FinitePresentation.iff_quotient_mvPolynomial'

IntermediateField

Definitions

NameCategoryTheorems
FG πŸ“–MathDef
9 mathmath: fg_adjoin_finset, fg_def, fg_bot, fg_of_noetherian, fg_adjoin_of_finite, fg_of_fg_toSubalgebra, fg_top, fg_top_iff, essFiniteType_iff

Monoid

Definitions

NameCategoryTheorems
FG πŸ“–CompData
23 mathmath: CommMonoid.fg_of_wellQuasiOrderedLE, Algebra.GrothendieckGroup.instFG, IsAffineMonoid.toFG, fg_iff_submonoid_fg, fg_iff_exists_freeMonoid_hom_surjective, fg_range, MonoidAlgebra.finiteType_iff_fg, fg_iff_add_fg, closure_finset_fg, Localization.fg, fg_iff, Group.fg_iff_monoid_fg, MonoidAlgebra.fg_of_finiteType, powers_fg, NumberField.Units.instFGUnitsRingOfIntegers, fg_of_surjective, Prod.instMonoidFG, closure_finite_fg, fg_of_group_fg, fg_of_addMonoid_fg, fg_def, fg_of_finite, AddMonoid.fg_iff_mul_fg

SemigroupIdeal

Definitions

NameCategoryTheorems
FG πŸ“–MathDef
2 mathmath: fg_of_wellQuasiOrderedLE, fg_iff

SubAddAction

Definitions

NameCategoryTheorems
FG πŸ“–MathDef
1 mathmath: fg_iff

SubMulAction

Definitions

NameCategoryTheorems
FG πŸ“–MathDef
1 mathmath: fg_iff

Subalgebra

Definitions

NameCategoryTheorems
FG πŸ“–MathDef
15 mathmath: exists_fg_and_mem_baseChange, fg_of_fg_toSubmodule, fg_of_noetherian, TensorProduct.Algebra.exists_of_fg, fg_adjoin_finset, fg_of_submodule_fg, fg_def, fg_iff_finiteType, reesAlgebra.fg, Algebra.Etale.exists_subalgebra_fg, fg_bot, fg_top, Algebra.FiniteType.out, Algebra.Smooth.exists_subalgebra_fg, Algebra.IsStandardSmoothOfRelativeDimension.exists_subalgebra_fg

Theorems

NameKindAssumesProvesValidatesDepends On
fg_adjoin_finset πŸ“–mathematicalβ€”FG
Algebra.adjoin
SetLike.coe
Finset
Finset.instSetLike
β€”β€”
fg_bot πŸ“–mathematicalβ€”FG
Bot.bot
Subalgebra
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”Algebra.adjoin_empty
Finset.coe_empty
fg_def πŸ“–mathematicalβ€”FG
Set.Finite
Algebra.adjoin
β€”Set.exists_finite_iff_finset
fg_of_fg_map πŸ“–β€”DFunLike.coe
AlgHom
AlgHom.funLike
FG
map
β€”β€”map_injective
Algebra.adjoin_image
Finset.coe_preimage
Set.image_preimage_eq_of_subset
AlgHom.coe_range
Algebra.adjoin_le_iff
Algebra.map_top
map_mono
le_top
fg_of_fg_toSubmodule πŸ“–mathematicalSubmodule.FG
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
DFunLike.coe
OrderEmbedding
Subalgebra
Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
toSubmodule
FGβ€”le_antisymm
Algebra.adjoin_le
Submodule.subset_span
Submodule.span_le
Algebra.subset_adjoin
fg_of_noetherian πŸ“–mathematicalβ€”FGβ€”fg_of_fg_toSubmodule
IsNoetherian.noetherian
fg_of_submodule_fg πŸ“–mathematicalSubmodule.FG
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Top.top
Submodule
Submodule.instTop
FG
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”RelEmbedding.injective
Algebra.top_toSubmodule
eq_top_iff
Submodule.span_le
Algebra.subset_adjoin
fg_top πŸ“–mathematicalβ€”FG
Subalgebra
SetLike.instMembership
instSetLike
toSemiring
algebra
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”range_val
Algebra.map_top
FG.map
fg_of_fg_map
Subtype.val_injective
induction_on_adjoin πŸ“–β€”Bot.bot
Subalgebra
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Algebra.adjoin
Set
Set.instInsert
SetLike.coe
instSetLike
β€”β€”fg_of_noetherian
Finset.induction_on
Finset.coe_empty
Algebra.adjoin_empty
Finset.coe_insert
Algebra.adjoin_insert_adjoin

Subalgebra.FG

Theorems

NameKindAssumesProvesValidatesDepends On
map πŸ“–mathematicalSubalgebra.FGSubalgebra.mapβ€”Finset.coe_image
Algebra.adjoin_image
prod πŸ“–mathematicalSubalgebra.FGProd.instSemiring
Prod.algebra
Subalgebra.prod
β€”Subalgebra.fg_def
Set.Finite.union
Set.Finite.image
Set.finite_singleton
Algebra.adjoin_inl_union_inr_eq_prod
sup πŸ“–mathematicalSubalgebra.FGSubalgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Algebra.instCompleteLatticeSubalgebra
β€”Subalgebra.fg_def
Set.Finite.union
Algebra.adjoin_union

Subgroup

Definitions

NameCategoryTheorems
FG πŸ“–MathDef
8 mathmath: Group.fg_def, fg_iff_submonoid_fg, fg_iff_add_fg, fg_iff, Group.fg_iff_subgroup_fg, AddSubgroup.fg_iff_mul_fg, Group.FG.out, FG.bot

Submodule

Definitions

NameCategoryTheorems
FG πŸ“–MathDef
66 mathmath: Module.FinitePresentation.fg_ker, FG.rTensor.directedSystem, fg_iff_spanRank_eq_spanFinrank, fg_of_isUnit, FractionalIdeal.fg_of_isUnit, isNoetherian_submodule_right, Module.Finite.fg_top, FractionalIdeal.fg_unit, FractionalIdeal.coeIdeal_fg, fg_of_ker_bot, fg_map_iff, FG.lTensor.directedSystem, isNoetherian_submodule, Module.FinitePresentation.equiv_quotient, Algebra.QuasiFiniteAt.exists_fg_and_exists_notMem_and_awayMap_bijective, IsPrincipal.fg, range_fg_iff_ker_cofg, fg_def, ZLattice.FG, fg_iff_exists_finite_generating_family, FG.restrictScalars_iff, spanRank_finite_iff_fg, Module.FinitePresentation.exists_fin, isNoetherian_iff_fg_wellFounded, fg_span_iff_fg_span_finset_subset, FG.rTensor.directLimit_apply, FractionalIdeal.fg_of_isNoetherianRing, fg_range, mem_integralClosure_iff_mem_fg, IsNoetherian.noetherian, fg_iff_addSubgroup_fg, Ideal.is_fg_degreeLE, isNoetherian_def, Module.finite_def, fg_iff_addSubmonoid_fg, fg_adjoin_of_finite, fg_iff_exists_fin_generating_family, fg_of_injective, FractionalIdeal.isNoetherian_iff, Module.fgSystem.instIsDirectedOrderSubtypeSubmoduleFG, Module.FinitePresentation.out, FG.directedSystem, fg_iff_exists_fin_linearMap, IsLattice.fg, FG.lTensor.directLimit_apply, Module.fgSystem.equiv_comp_of, Module.Finite.iff_fg, fg_top, fg_iff_finiteDimensional, fg_span_singleton, fg_iff_add_subgroup_fg, fg_iff_compact, FG.of_le_of_isNoetherian, isNoetherian_submodule_left, IsIntegral.fg_adjoin_singleton, Module.FinitePresentation.fg_ker_iff, fg_bot, FG.of_finite, Module.fgSystem.instDirectedSystemSubtypeSubmoduleFGMemValCoeLinearMapId, IsLocalization.coeSubmodule_fg, fg_span, CoFG.fg_of_isCompl, TensorProduct.exists_of_fg, Subalgebra.fg_bot_toSubmodule, fg_unit, Algebra.ZariskisMainProperty.exists_fg_and_exists_notMem_and_awayMap_bijective

Submonoid

Definitions

NameCategoryTheorems
FG πŸ“–MathDef
11 mathmath: fg_iff_add_fg, Monoid.fg_iff_submonoid_fg, fg_of_divisive, fg_eqLocusM, Monoid.FG.fg_top, Subgroup.fg_iff_submonoid_fg, powers_fg, fg_iff, FG.bot, AddSubmonoid.fg_iff_mul_fg, Monoid.fg_def

ZLattice

Theorems

NameKindAssumesProvesValidatesDepends On
FG πŸ“–mathematicalβ€”Submodule.FG
Int.instSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
AddCommGroup.toIntModule
NormedAddCommGroup.toAddCommGroup
β€”exists_linearIndependent
Submodule.fg_of_fg_map_of_fg_inf_ker
RingHomSurjective.ids
Submodule.fg_def
IsZLattice.span_top
Submodule.span_mono
Subtype.range_coe_subtype
Set.instReflSubset
LinearIndependent.setFinite
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Set.Finite.of_finite_image
Metric.finite_isBounded_inter_isClosed
DiscreteTopology.isDiscrete
ZSpan.fundamentalDomain_isBounded
Finite.of_fintype
AddSubgroup.isClosed_of_discrete
SeminormedAddCommGroup.toIsTopologicalAddGroup
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Set.Finite.subset
Submodule.mkQ_apply
ZSpan.fractRestrict_apply
ZSpan.fract_mem_fundamentalDomain
ZSpan.fract.eq_1
SetLike.mem_coe
sub_eq_add_neg
Submodule.add_mem
NegMemClass.neg_mem
AddSubgroupClass.toNegMemClass
Submodule.addSubgroupClass
Set.mem_of_subset_of_mem
SetLike.coe_subset_coe
instIsConcreteLE
Set.setOf_mem_eq
Submodule.span_le
Subtype.mem
Function.Injective.injOn
Subtype.coe_injective
Equiv.injective
Submodule.span_eq
Submodule.ker_mkQ
inf_of_le_right
Submodule.fg_span

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isNoetherianRing_of_fg πŸ“–mathematicalSubalgebra.FG
CommRing.toCommSemiring
CommSemiring.toSemiring
IsNoetherianRing
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.toSemiring
β€”AlgHom.isNoetherianRing_range
MvPolynomial.isNoetherianRing
Finite.of_fintype
Algebra.adjoin_eq_range
is_noetherian_subring_closure πŸ“–mathematicalβ€”IsNoetherianRing
Subring
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
Subring.closure
CommSemiring.toSemiring
SubsemiringClass.toCommSemiring
CommRing.toCommSemiring
SubringClass.toSubsemiringClass
Subring.instSubringClass
β€”isNoetherianRing_of_fg
Subalgebra.fg_def
isNoetherian_of_isNoetherianRing_of_finite
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
AddGroup.instFGInt
Algebra.adjoin_int

---

← Back to Index