Documentation

BanachTarski.FixedPointLemma

The goal of this module is just to prove lemma fixed_lemma (g : SO3) : g≠1 → ({x ∈ S2 | g • x = x} = āˆ… ∨ Nat.card ({x ∈ S2 | g • x = x}) = 2)

Equations
Instances For
    noncomputable def g_end_raw (g : ↄSO3) :
    Equations
    Instances For
      Equations
      Instances For
        noncomputable def K (g : ↄSO3) :
        Equations
        Instances For
          noncomputable def as_complex (M : MAT) :
          Equations
          Instances For
            noncomputable def cpoly (g : ↄSO3) :
            Equations
            Instances For
              theorem cpoly_coef_real (g : ↄSO3) (i : ā„•) :
              ∃ (x : ā„), ↑x = (cpoly g).coeff i
              theorem det_as_prod (g : ↄSO3) :
              @[reducible, inline]
              abbrev C3 :
              Equations
              Instances For
                theorem eig_norms (g : ↄSO3) (z : ā„‚) :
                z ∈ (cpoly g).roots → ‖z‖ = 1
                theorem flem {z : ā„‚} (g : ↄSO3) :
                z ∈ (cpoly g).roots → z = CONJ z → z = 1 ∨ z = -1
                theorem flem2 {z : ā„‚} (g : ↄSO3) :
                z ∈ (cpoly g).roots → z ≠ 1 ∧ z ≠ -1 → z ≠ CONJ z
                theorem conj_roots_2 (g : ↄSO3) (z : ā„‚) :
                z ∈ (cpoly g).roots → CONJ z ∈ (cpoly g).roots
                theorem conj_roots_4 {z : ā„‚} (g : ↄSO3) :
                z ∈ (cpoly g).roots → z ≠ 1 ∧ z ≠ -1 → Multiset.count z (cpoly g).roots = 1
                theorem conj_mul_roots {z : ā„‚} (g : ↄSO3) :
                z ∈ (cpoly g).roots → z * CONJ z = 1
                theorem idlem (g : ↄSO3) :
                Multiset.count 1 (cpoly g).roots = 3 → g = 1
                theorem tight_space_lemma (g : ↄSO3) :
                Multiset.count 1 (cpoly g).roots + Multiset.count (-1) (cpoly g).roots ≄ 2 → āˆ€ w ∈ (cpoly g).roots, w = 1 ∨ w = -1
                theorem spec_lem (g : ↄSO3) :
                g ≠ 1 → Multiset.count 1 (cpoly g).roots = 1
                theorem K_id (g : ↄSO3) :
                theorem dim_ker (g : ↄSO3) :
                g ≠ 1 → Module.finrank ā„ ↄ(K g) ≤ 1
                theorem fixed_lemma (g : ↄSO3) :
                g ≠ 1 → {x : R3 | x ∈ S2 ∧ g • x = x} = āˆ… ∨ Nat.card ↑{x : R3 | x ∈ S2 ∧ g • x = x} = 2