The goal of this module is just to prove lemma fixed_lemma (g : SO3) : gā 1 ā ({x ā S2 | g ⢠x = x} = ā ⨠Nat.card ({x ā S2 | g ⢠x = x}) = 2)
Equations
- ofLp_linear = ā(WithLp.linearEquiv 2 ā R3_raw)
Instances For
Equations
- to_R3_linear = ā(WithLp.linearEquiv 2 ā R3_raw).symm
Instances For
Equations
- g_end_raw g = Matrix.toLin' āg
Instances For
Equations
Instances For
Equations
- kermap_raw g = Matrix.toLin' (āg - 1)
Instances For
Equations
Instances For
Equations
- as_complex M = (algebraMap ā ā).mapMatrix M
Instances For
Equations
- cpoly g = (as_complex āg).charpoly
Instances For
theorem
cast_root_mult1
(g : ā„SO3)
:
Polynomial.rootMultiplicity 1 (āg).charpoly = Polynomial.rootMultiplicity 1 (Polynomial.map (algebraMap ā ā) (āg).charpoly)
theorem
tight_space_lemma_2
(g : ā„SO3)
:
Multiset.count 1 (cpoly g).roots + Multiset.count (-1) (cpoly g).roots ā„ 2 ā
Multiset.count 1 (cpoly g).roots + Multiset.count (-1) (cpoly g).roots = 3