Documentation

Mathlib.Algebra.Category.ModuleCat.Sheaf.PushforwardContinuous

Pushforward of sheaves of modules #

Assume that categories C and D are equipped with Grothendieck topologies, and that F : C ⥤ D is a continuous functor. Then, if φ : S ⟶ (F.sheafPushforwardContinuous RingCat.{u} J K).obj R is a morphism of sheaves of rings, we construct the pushforward functor pushforward φ : SheafOfModules.{v} R ⥤ SheafOfModules.{v} S, and we show that they interact with the composition of morphisms similarly as pseudofunctors.

The pushforward of sheaves of modules that is induced by a continuous functor F and a morphism of sheaves of rings φ : S ⟶ (F.sheafPushforwardContinuous RingCat J K).obj R.

Equations
    Instances For
      @[reducible, inline]

      Given M : SheafOfModules R and X : D, this is the restriction of M over the sheaf of rings R.over X on the category Over X.

      Equations
        Instances For

          The pushforward functor by the identity morphism identifies to the identify functor of the category of sheaves of modules.

          Equations
            Instances For

              Pushforwards along equal morphisms of sheaves of rings are isomorphic.

              Equations
                Instances For

                  The composition of two pushforward functors on categories of sheaves of modules identify to the pushforward for the composition.

                  Equations
                    Instances For
                      theorem SheafOfModules.pushforward_assoc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] {D' : Type u₃} [CategoryTheory.Category.{v₃, u₃} D'] {D'' : Type u₄} [CategoryTheory.Category.{v₄, u₄} D''] {J : CategoryTheory.GrothendieckTopology C} {K : CategoryTheory.GrothendieckTopology D} {F : CategoryTheory.Functor C D} {S : CategoryTheory.Sheaf J RingCat} {R : CategoryTheory.Sheaf K RingCat} [F.IsContinuous J K] [F.IsContinuous J K] (φ : S (F.sheafPushforwardContinuous RingCat J K).obj R) {K' : CategoryTheory.GrothendieckTopology D'} {K'' : CategoryTheory.GrothendieckTopology D''} {G : CategoryTheory.Functor D D'} {R' : CategoryTheory.Sheaf K' RingCat} [G.IsContinuous K K'] [G.IsContinuous K K'] [(F.comp G).IsContinuous J K'] [(F.comp G).IsContinuous J K'] (ψ : R (G.sheafPushforwardContinuous RingCat K K').obj R') {G' : CategoryTheory.Functor D' D''} {R'' : CategoryTheory.Sheaf K'' RingCat} [G'.IsContinuous K' K''] [G'.IsContinuous K' K''] [(G.comp G').IsContinuous K K''] [(G.comp G').IsContinuous K K''] [((F.comp G).comp G').IsContinuous J K''] [((F.comp G).comp G').IsContinuous J K''] [(F.comp (G.comp G')).IsContinuous J K''] [(F.comp (G.comp G')).IsContinuous J K''] (ψ' : R' (G'.sheafPushforwardContinuous RingCat K' K'').obj R'') :

                      The canonical morphism from R to the pushforward of its restriction to Over x.

                      Equations
                        Instances For