Documentation

Mathlib.CategoryTheory.Sites.Over

Localization

In this file, given a Grothendieck topology J on a category C and X : C, we construct a Grothendieck topology J.over X on the category Over X. In order to do this, we first construct a bijection Sieve.overEquiv Y : Sieve Y โ‰ƒ Sieve Y.left for all Y : Over X. Then, as it is stated in SGA 4 III 5.2.1, a sieve of Y : Over X is covering for J.over X if and only if the corresponding sieve of Y.left is covering for J. As a result, the forgetful functor Over.forget X : Over X โฅค X is both cover-preserving and cover-lifting.

The equivalence Sieve Y โ‰ƒ Sieve Y.left for all Y : Over X.

Equations
    Instances For
      theorem CategoryTheory.Sieve.overEquiv_le_overEquiv_iff {C : Type u} [Category.{v, u} C] {X : C} {Y : Over X} (Rโ‚ Rโ‚‚ : Sieve Y) :
      (overEquiv Y) Rโ‚ โ‰ค (overEquiv Y) Rโ‚‚ โ†” Rโ‚ โ‰ค Rโ‚‚
      theorem CategoryTheory.Sieve.overEquiv_pullback {C : Type u} [Category.{v, u} C] {X : C} {Yโ‚ Yโ‚‚ : Over X} (f : Yโ‚ โŸถ Yโ‚‚) (S : Sieve Yโ‚‚) :
      (overEquiv Yโ‚) (pullback f S) = pullback f.left ((overEquiv Yโ‚‚) S)
      theorem CategoryTheory.Sieve.overEquiv_symm_pullback {C : Type u} [Category.{v, u} C] {X : C} {Yโ‚ Yโ‚‚ : Over X} (f : Yโ‚ โŸถ Yโ‚‚) (S : Sieve Yโ‚‚.left) :
      (overEquiv Yโ‚).symm (pullback f.left S) = pullback f ((overEquiv Yโ‚‚).symm S)
      @[simp]
      theorem CategoryTheory.Sieve.overEquiv_symm_iff {C : Type u} [Category.{v, u} C] {X : C} {Y : Over X} (S : Sieve Y.left) {Z : Over X} (f : Z โŸถ Y) :
      theorem CategoryTheory.Sieve.overEquiv_iff {C : Type u} [Category.{v, u} C] {X : C} {Y : Over X} (S : Sieve Y) {Z : C} (f : Z โŸถ Y.left) :
      ((overEquiv Y) S).arrows f โ†” S.arrows (Over.homMk f โ‹ฏ)

      The Grothendieck topology on the category Over X for any X : C that is induced by a Grothendieck topology on C.

      Equations
        Instances For
          @[reducible, inline]

          The pullback functor Sheaf J A โฅค Sheaf (J.over X) A

          Equations
            Instances For
              @[reducible, inline]

              The pullback functor Sheaf (J.over Y) A โฅค Sheaf (J.over X) A induced by a morphism f : X โŸถ Y.

              Equations
                Instances For

                  Two identical morphisms give isomorphic overMapPullback functors on sheaves.

                  Equations
                    Instances For
                      @[simp]
                      theorem CategoryTheory.GrothendieckTopology.overMapPullbackCongr_inv_app_val_app {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (A : Type u') [Category.{v', u'} A] {X Y : C} {f g : X โŸถ Y} (h : f = g) (M : Sheaf (J.over Y) A) (Xโœ : (Over X)แต’แต–) :
                      ((J.overMapPullbackCongr A h).inv.app M).val.app Xโœ = M.val.map ((Over.mapCongr f g h).hom.app (Opposite.unop Xโœ)).op
                      @[simp]
                      theorem CategoryTheory.GrothendieckTopology.overMapPullbackCongr_hom_app_val_app {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (A : Type u') [Category.{v', u'} A] {X Y : C} {f g : X โŸถ Y} (h : f = g) (M : Sheaf (J.over Y) A) (Xโœ : (Over X)แต’แต–) :
                      ((J.overMapPullbackCongr A h).hom.app M).val.app Xโœ = M.val.map ((Over.mapCongr f g h).inv.app (Opposite.unop Xโœ)).op

                      Applying overMapPullback to the identity map gives the identity functor.

                      Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.GrothendieckTopology.overMapPullbackId_hom_app_val_app {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (A : Type u') [Category.{v', u'} A] (X : C) (Xโœ : Sheaf (J.over X) A) (Xโœยน : (Over X)แต’แต–) :
                          ((J.overMapPullbackId A X).hom.app Xโœ).val.app Xโœยน = Xโœ.val.map ((Over.mapId X).inv.app (Opposite.unop Xโœยน)).op
                          @[simp]
                          theorem CategoryTheory.GrothendieckTopology.overMapPullbackId_inv_app_val_app {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (A : Type u') [Category.{v', u'} A] (X : C) (Xโœ : Sheaf (J.over X) A) (Xโœยน : (Over X)แต’แต–) :
                          ((J.overMapPullbackId A X).inv.app Xโœ).val.app Xโœยน = Xโœ.val.map ((Over.mapId X).hom.app (Opposite.unop Xโœยน)).op

                          The composition of two overMapPullback functors identifies to overMapPullback for the composition.

                          Equations
                            Instances For
                              @[simp]
                              theorem CategoryTheory.GrothendieckTopology.overMapPullbackComp_inv_app_val_app {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (A : Type u') [Category.{v', u'} A] {X Y Z : C} (f : X โŸถ Y) (g : Y โŸถ Z) (Xโœ : Sheaf (J.over Z) A) (Xโœยน : (Over X)แต’แต–) :
                              ((J.overMapPullbackComp A f g).inv.app Xโœ).val.app Xโœยน = Xโœ.val.map ((Over.mapComp f g).inv.app (Opposite.unop Xโœยน)).op
                              @[simp]
                              theorem CategoryTheory.GrothendieckTopology.overMapPullbackComp_hom_app_val_app {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (A : Type u') [Category.{v', u'} A] {X Y Z : C} (f : X โŸถ Y) (g : Y โŸถ Z) (Xโœ : Sheaf (J.over Z) A) (Xโœยน : (Over X)แต’แต–) :
                              ((J.overMapPullbackComp A f g).hom.app Xโœ).val.app Xโœยน = Xโœ.val.map ((Over.mapComp f g).hom.app (Opposite.unop Xโœยน)).op
                              @[reducible, inline]
                              abbrev CategoryTheory.Sheaf.over {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {A : Type u'} [Category.{v', u'} A] (F : Sheaf J A) (X : C) :
                              Sheaf (J.over X) A

                              Given F : Sheaf J A and X : C, this is the pullback of F on J.over X.

                              Equations
                                Instances For

                                  The Grothendieck topology on Over X, obtained from localizing the topology generated by the precoverage K, is generated by the preimage of K.