Documentation

Mathlib.Algebra.Group.Subgroup.MulOppositeLemmas

Mul-opposite subgroups #

This file contains a somewhat arbitrary assortment of results on the opposite subgroup H.op that rely on further theory to define. As such it is a somewhat arbitrary assortment of results, which might be organized and split up further.

Tags #

subgroup, subgroups

instance Subgroup.instSMul {G : Type u_2} [Group G] (H : Subgroup G) :
SMul (โ†ฅH.op) G
Equations
    instance AddSubgroup.instVAdd {G : Type u_2} [AddGroup G] (H : AddSubgroup G) :
    VAdd (โ†ฅH.op) G
    Equations

      Lattice results #

      theorem Subgroup.op_sup {G : Type u_2} [Group G] (Sโ‚ Sโ‚‚ : Subgroup G) :
      (Sโ‚ โŠ” Sโ‚‚).op = Sโ‚.op โŠ” Sโ‚‚.op
      theorem AddSubgroup.op_sup {G : Type u_2} [AddGroup G] (Sโ‚ Sโ‚‚ : AddSubgroup G) :
      (Sโ‚ โŠ” Sโ‚‚).op = Sโ‚.op โŠ” Sโ‚‚.op
      theorem Subgroup.unop_sup {G : Type u_2} [Group G] (Sโ‚ Sโ‚‚ : Subgroup Gแตแต’แต–) :
      (Sโ‚ โŠ” Sโ‚‚).unop = Sโ‚.unop โŠ” Sโ‚‚.unop
      theorem AddSubgroup.unop_sup {G : Type u_2} [AddGroup G] (Sโ‚ Sโ‚‚ : AddSubgroup Gแตƒแต’แต–) :
      (Sโ‚ โŠ” Sโ‚‚).unop = Sโ‚.unop โŠ” Sโ‚‚.unop
      theorem Subgroup.op_inf {G : Type u_2} [Group G] (Sโ‚ Sโ‚‚ : Subgroup G) :
      (Sโ‚ โŠ“ Sโ‚‚).op = Sโ‚.op โŠ“ Sโ‚‚.op
      theorem AddSubgroup.op_inf {G : Type u_2} [AddGroup G] (Sโ‚ Sโ‚‚ : AddSubgroup G) :
      (Sโ‚ โŠ“ Sโ‚‚).op = Sโ‚.op โŠ“ Sโ‚‚.op
      theorem Subgroup.unop_inf {G : Type u_2} [Group G] (Sโ‚ Sโ‚‚ : Subgroup Gแตแต’แต–) :
      (Sโ‚ โŠ“ Sโ‚‚).unop = Sโ‚.unop โŠ“ Sโ‚‚.unop
      theorem AddSubgroup.unop_inf {G : Type u_2} [AddGroup G] (Sโ‚ Sโ‚‚ : AddSubgroup Gแตƒแต’แต–) :
      (Sโ‚ โŠ“ Sโ‚‚).unop = Sโ‚.unop โŠ“ Sโ‚‚.unop
      theorem Subgroup.op_iSup {ฮน : Sort u_1} {G : Type u_2} [Group G] (S : ฮน โ†’ Subgroup G) :
      (iSup S).op = โจ† (i : ฮน), (S i).op
      theorem AddSubgroup.op_iSup {ฮน : Sort u_1} {G : Type u_2} [AddGroup G] (S : ฮน โ†’ AddSubgroup G) :
      (iSup S).op = โจ† (i : ฮน), (S i).op
      theorem Subgroup.unop_iSup {ฮน : Sort u_1} {G : Type u_2} [Group G] (S : ฮน โ†’ Subgroup Gแตแต’แต–) :
      (iSup S).unop = โจ† (i : ฮน), (S i).unop
      theorem AddSubgroup.unop_iSup {ฮน : Sort u_1} {G : Type u_2} [AddGroup G] (S : ฮน โ†’ AddSubgroup Gแตƒแต’แต–) :
      (iSup S).unop = โจ† (i : ฮน), (S i).unop
      theorem Subgroup.op_iInf {ฮน : Sort u_1} {G : Type u_2} [Group G] (S : ฮน โ†’ Subgroup G) :
      (iInf S).op = โจ… (i : ฮน), (S i).op
      theorem AddSubgroup.op_iInf {ฮน : Sort u_1} {G : Type u_2} [AddGroup G] (S : ฮน โ†’ AddSubgroup G) :
      (iInf S).op = โจ… (i : ฮน), (S i).op
      theorem Subgroup.unop_iInf {ฮน : Sort u_1} {G : Type u_2} [Group G] (S : ฮน โ†’ Subgroup Gแตแต’แต–) :
      (iInf S).unop = โจ… (i : ฮน), (S i).unop
      theorem AddSubgroup.unop_iInf {ฮน : Sort u_1} {G : Type u_2} [AddGroup G] (S : ฮน โ†’ AddSubgroup Gแตƒแต’แต–) :
      (iInf S).unop = โจ… (i : ฮน), (S i).unop
      theorem Subgroup.smul_opposite_mul {G : Type u_2} [Group G] {H : Subgroup G} (x g : G) (h : โ†ฅH.op) :
      h โ€ข (g * x) = g * h โ€ข x
      theorem AddSubgroup.vadd_opposite_add {G : Type u_2} [AddGroup G] {H : AddSubgroup G} (x g : G) (h : โ†ฅH.op) :
      h +แตฅ g + x = g + (h +แตฅ x)
      theorem Subgroup.Normal.op {G : Type u_2} [Group G] {H : Subgroup G} :
      H.Normal โ†’ H.op.Normal

      Alias of the reverse direction of Subgroup.normal_op.

      theorem Subgroup.Normal.of_op {G : Type u_2} [Group G] {H : Subgroup G} :
      H.op.Normal โ†’ H.Normal

      Alias of the forward direction of Subgroup.normal_op.

      Alias of the reverse direction of Subgroup.normal_unop.

      Alias of the forward direction of Subgroup.normal_unop.