Documentation

Mathlib.Analysis.Complex.CoveringMap

Covering maps involving the complex plane #

In this file, we show that Complex.exp and (ยท ^ n) (for n โ‰  0) are a covering map on {0}แถœ. We also show that any complex polynomial is a covering map on the set of regular values.

exp : โ„‚ โ†’ โ„‚ \ {0} is a covering map.

theorem Polynomial.isCoveringMapOn_eval {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] [ProperSpace ๐•œ] (p : Polynomial ๐•œ) :
IsCoveringMapOn (fun (x : ๐•œ) => eval x p) ((fun (x : ๐•œ) => eval x p) '' {k : ๐•œ | eval k (derivative p) = 0})แถœ
theorem isCoveringMapOn_npow {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] [ProperSpace ๐•œ] (n : โ„•) (hn : โ†‘n โ‰  0) :
IsCoveringMapOn (fun (x : ๐•œ) => x ^ n) {0}แถœ
theorem isCoveringMap_npow {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] [ProperSpace ๐•œ] (n : โ„•) (hn : โ†‘n โ‰  0) :
IsCoveringMap fun (x : { x : ๐•œ // x โ‰  0 }) => โŸจโ†‘x ^ n, โ‹ฏโŸฉ

(ยท ^ n) : ๐•œ \ {0} โ†’ ๐•œ \ {0} is a covering map (if n โ‰  0 in ๐•œ).

theorem isCoveringMap_zpow {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] [ProperSpace ๐•œ] (n : โ„ค) (hn : โ†‘n โ‰  0) :
IsCoveringMap fun (x : { x : ๐•œ // x โ‰  0 }) => โŸจโ†‘x ^ n, โ‹ฏโŸฉ

(ยท ^ n) : ๐•œ \ {0} โ†’ ๐•œ \ {0} is a covering map (if n โ‰  0 in ๐•œ).

theorem isCoveringMapOn_zpow {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] [ProperSpace ๐•œ] (n : โ„ค) (hn : โ†‘n โ‰  0) :
IsCoveringMapOn (fun (x : ๐•œ) => x ^ n) {0}แถœ
theorem isQuotientCoveringMap_npow {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] [ProperSpace ๐•œ] (n : โ„•) (hn : โ†‘n โ‰  0) (surj : Function.Surjective fun (x : ๐•œ) => x ^ n) :
IsQuotientCoveringMap (fun (x : ๐•œหฃ) => x ^ n) โ†ฅ(powMonoidHom n).ker
theorem isQuotientCoveringMap_zpow {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] [ProperSpace ๐•œ] (n : โ„ค) (hn : โ†‘n โ‰  0) (surj : Function.Surjective fun (x : ๐•œ) => x ^ n) :
IsQuotientCoveringMap (fun (x : ๐•œหฃ) => x ^ n) โ†ฅ(zpowGroupHom n).ker