Covering maps involving the complex plane #
In this file, we show that Complex.exp and (ยท ^ n) (for n โ 0) are a covering map on {0}แถ.
We also show that any complex polynomial is a covering map on the set of regular values.
theorem
Complex.isAddQuotientCoveringMap_exp :
IsAddQuotientCoveringMap (fun (z : โ) => โจexp z, โฏโฉ) โฅ(AddSubgroup.zmultiples (2 * โReal.pi * I))
exp : โ โ โ \ {0} is a covering map.
theorem
Polynomial.isCoveringMapOn_eval
{๐ : Type u_1}
[NontriviallyNormedField ๐]
[ProperSpace ๐]
(p : Polynomial ๐)
:
theorem
isCoveringMapOn_npow
{๐ : Type u_1}
[NontriviallyNormedField ๐]
[ProperSpace ๐]
(n : โ)
(hn : โn โ 0)
:
IsCoveringMapOn (fun (x : ๐) => x ^ n) {0}แถ
theorem
isCoveringMap_npow
{๐ : Type u_1}
[NontriviallyNormedField ๐]
[ProperSpace ๐]
(n : โ)
(hn : โn โ 0)
:
(ยท ^ n) : ๐ \ {0} โ ๐ \ {0} is a covering map (if n โ 0 in ๐).
theorem
isCoveringMap_zpow
{๐ : Type u_1}
[NontriviallyNormedField ๐]
[ProperSpace ๐]
(n : โค)
(hn : โn โ 0)
:
(ยท ^ n) : ๐ \ {0} โ ๐ \ {0} is a covering map (if n โ 0 in ๐).
theorem
isCoveringMapOn_zpow
{๐ : Type u_1}
[NontriviallyNormedField ๐]
[ProperSpace ๐]
(n : โค)
(hn : โn โ 0)
:
IsCoveringMapOn (fun (x : ๐) => x ^ n) {0}แถ
theorem
isQuotientCoveringMap_npow
{๐ : Type u_1}
[NontriviallyNormedField ๐]
[ProperSpace ๐]
(n : โ)
(hn : โn โ 0)
(surj : Function.Surjective fun (x : ๐) => x ^ n)
:
IsQuotientCoveringMap (fun (x : ๐หฃ) => x ^ n) โฅ(powMonoidHom n).ker
theorem
Complex.isQuotientCoveringMap_npow
(n : โ)
[NeZero n]
:
IsQuotientCoveringMap (fun (z : โหฃ) => z ^ n) โฅ(powMonoidHom n).ker
theorem
isQuotientCoveringMap_zpow
{๐ : Type u_1}
[NontriviallyNormedField ๐]
[ProperSpace ๐]
(n : โค)
(hn : โn โ 0)
(surj : Function.Surjective fun (x : ๐) => x ^ n)
:
IsQuotientCoveringMap (fun (x : ๐หฃ) => x ^ n) โฅ(zpowGroupHom n).ker