Documentation

Mathlib.Analysis.Complex.ValueDistribution.CharacteristicFunction

The Characteristic Function of Value Distribution Theory #

This file defines the "characteristic function" attached to a meromorphic function defined on the complex plane. Also known as "Nevanlinna Height", this is one of the three main functions used in Value Distribution Theory.

The characteristic function plays a role analogous to the height function in number theory: both measure the "complexity" of objects. For rational functions, the characteristic function grows like the degree times the logarithm, much like the logarithmic height in number theory reflects the degree of an algebraic number.

See Section VI.2 of [Lang, Introduction to Complex Hyperbolic Spaces][MR886677] or Section 1.1 of [Noguchi-Winkelmann, Nevanlinna Theory in Several Complex Variables and Diophantine Approximation][MR3156076] for a detailed discussion.

TODO #

noncomputable def ValueDistribution.characteristic {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] (f : โ„‚ โ†’ E) (a : WithTop E) :

The Characteristic Function of Value Distribution Theory

If f : โ„‚ โ†’ E is meromorphic and a : WithTop E is any value, the characteristic function of f is defined as the sum of two terms: the proximity function, which quantifies how close f gets to a on the circle โˆฃzโˆฃ = r, and the logarithmic counting function, which counts the number times that f attains the value a inside the disk โˆฃzโˆฃ โ‰ค r, weighted by multiplicity.

Equations
    Instances For

      Elementary Properties #

      If two functions differ only on a discrete set, then their characteristic functions agree, except perhaps at radius 0.

      @[simp]

      The difference between the characteristic functions for the poles of f and f - const simplifies to the difference between the proximity functions.

      The characteristic function is even.

      For 1 โ‰ค r, the characteristic function is non-negative.

      The characteristic function is asymptotically non-negative.

      Behaviour under Arithmetic Operations #

      theorem ValueDistribution.characteristic_add_top_le {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] {fโ‚ fโ‚‚ : โ„‚ โ†’ E} {r : โ„} (hโ‚fโ‚ : Meromorphic fโ‚) (hโ‚fโ‚‚ : Meromorphic fโ‚‚) (hr : 1 โ‰ค r) :

      For 1 โ‰ค r, the characteristic function of f + g at โŠค is less than or equal to the sum of the characteristic functions of f and g, respectively, plus log 2 (where 2 is the number of summands).

      theorem ValueDistribution.characteristic_add_top_eventuallyLE {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] {fโ‚ fโ‚‚ : โ„‚ โ†’ E} (hโ‚fโ‚ : Meromorphic fโ‚) (hโ‚fโ‚‚ : Meromorphic fโ‚‚) :

      Asymptotically, the characteristic function of f + g at โŠค is less than or equal to the sum of the characteristic functions of f and g, respectively.

      theorem ValueDistribution.characteristic_sum_top_le {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] {ฮฑ : Type u_2} (s : Finset ฮฑ) (f : ฮฑ โ†’ โ„‚ โ†’ E) {r : โ„} (hf : โˆ€ (a : ฮฑ), Meromorphic (f a)) (hr : 1 โ‰ค r) :
      characteristic (โˆ‘ a โˆˆ s, f a) โŠค r โ‰ค (โˆ‘ a โˆˆ s, characteristic (f a) โŠค) r + Real.log โ†‘s.card

      For 1 โ‰ค r, the characteristic function of a sum โˆ‘ a, f a at โŠค is less than or equal to the sum of the characteristic functions of f ยท, plus log s.card.

      theorem ValueDistribution.characteristic_sum_top_eventuallyLE {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] {ฮฑ : Type u_2} (s : Finset ฮฑ) (f : ฮฑ โ†’ โ„‚ โ†’ E) (hf : โˆ€ (a : ฮฑ), Meromorphic (f a)) :
      characteristic (โˆ‘ a โˆˆ s, f a) โŠค โ‰คแถ [Filter.atTop] โˆ‘ a โˆˆ s, characteristic (f a) โŠค + fun (x : โ„) => Real.log โ†‘s.card

      Asymptotically, the characteristic function of a sum โˆ‘ a, f a at โŠค is less than or equal to the sum of the characteristic functions of f ยท.

      theorem ValueDistribution.characteristic_mul_zero_le {fโ‚ fโ‚‚ : โ„‚ โ†’ โ„‚} {r : โ„} (hr : 1 โ‰ค r) (hโ‚fโ‚ : Meromorphic fโ‚) (hโ‚‚fโ‚ : โˆ€ (z : โ„‚), meromorphicOrderAt fโ‚ z โ‰  โŠค) (hโ‚fโ‚‚ : Meromorphic fโ‚‚) (hโ‚‚fโ‚‚ : โˆ€ (z : โ„‚), meromorphicOrderAt fโ‚‚ z โ‰  โŠค) :
      characteristic (fโ‚ * fโ‚‚) 0 r โ‰ค (characteristic fโ‚ 0 + characteristic fโ‚‚ 0) r

      For 1 โ‰ค r, the characteristic function for the zeros of f * g is less than or equal to the sum of the characteristic functions for the zeros of f and g, respectively.

      @[deprecated ValueDistribution.characteristic_mul_zero_le (since := "2025-12-11")]
      theorem ValueDistribution.characteristic_zero_mul_le {fโ‚ fโ‚‚ : โ„‚ โ†’ โ„‚} {r : โ„} (hr : 1 โ‰ค r) (hโ‚fโ‚ : Meromorphic fโ‚) (hโ‚‚fโ‚ : โˆ€ (z : โ„‚), meromorphicOrderAt fโ‚ z โ‰  โŠค) (hโ‚fโ‚‚ : Meromorphic fโ‚‚) (hโ‚‚fโ‚‚ : โˆ€ (z : โ„‚), meromorphicOrderAt fโ‚‚ z โ‰  โŠค) :
      characteristic (fโ‚ * fโ‚‚) 0 r โ‰ค (characteristic fโ‚ 0 + characteristic fโ‚‚ 0) r

      Alias of ValueDistribution.characteristic_mul_zero_le.


      For 1 โ‰ค r, the characteristic function for the zeros of f * g is less than or equal to the sum of the characteristic functions for the zeros of f and g, respectively.

      theorem ValueDistribution.characteristic_mul_zero_eventuallyLE {fโ‚ fโ‚‚ : โ„‚ โ†’ โ„‚} (hโ‚fโ‚ : Meromorphic fโ‚) (hโ‚‚fโ‚ : โˆ€ (z : โ„‚), meromorphicOrderAt fโ‚ z โ‰  โŠค) (hโ‚fโ‚‚ : Meromorphic fโ‚‚) (hโ‚‚fโ‚‚ : โˆ€ (z : โ„‚), meromorphicOrderAt fโ‚‚ z โ‰  โŠค) :

      Asymptotically, the characteristic function for the zeros of f * g is less than or equal to the sum of the characteristic functions for the zeros of f and g, respectively.

      @[deprecated ValueDistribution.characteristic_mul_zero_eventuallyLE (since := "2025-12-11")]
      theorem ValueDistribution.characteristic_zero_mul_eventually_le {fโ‚ fโ‚‚ : โ„‚ โ†’ โ„‚} (hโ‚fโ‚ : Meromorphic fโ‚) (hโ‚‚fโ‚ : โˆ€ (z : โ„‚), meromorphicOrderAt fโ‚ z โ‰  โŠค) (hโ‚fโ‚‚ : Meromorphic fโ‚‚) (hโ‚‚fโ‚‚ : โˆ€ (z : โ„‚), meromorphicOrderAt fโ‚‚ z โ‰  โŠค) :

      Alias of ValueDistribution.characteristic_mul_zero_eventuallyLE.


      Asymptotically, the characteristic function for the zeros of f * g is less than or equal to the sum of the characteristic functions for the zeros of f and g, respectively.

      theorem ValueDistribution.characteristic_mul_top_le {fโ‚ fโ‚‚ : โ„‚ โ†’ โ„‚} {r : โ„} (hr : 1 โ‰ค r) (hโ‚fโ‚ : Meromorphic fโ‚) (hโ‚‚fโ‚ : โˆ€ (z : โ„‚), meromorphicOrderAt fโ‚ z โ‰  โŠค) (hโ‚fโ‚‚ : Meromorphic fโ‚‚) (hโ‚‚fโ‚‚ : โˆ€ (z : โ„‚), meromorphicOrderAt fโ‚‚ z โ‰  โŠค) :
      characteristic (fโ‚ * fโ‚‚) โŠค r โ‰ค (characteristic fโ‚ โŠค + characteristic fโ‚‚ โŠค) r

      For 1 โ‰ค r, the characteristic function for the poles of f * g is less than or equal to the sum of the characteristic functions for the poles of f and g, respectively.

      @[deprecated ValueDistribution.characteristic_mul_top_le (since := "2025-12-11")]
      theorem ValueDistribution.characteristic_top_mul_le {fโ‚ fโ‚‚ : โ„‚ โ†’ โ„‚} {r : โ„} (hr : 1 โ‰ค r) (hโ‚fโ‚ : Meromorphic fโ‚) (hโ‚‚fโ‚ : โˆ€ (z : โ„‚), meromorphicOrderAt fโ‚ z โ‰  โŠค) (hโ‚fโ‚‚ : Meromorphic fโ‚‚) (hโ‚‚fโ‚‚ : โˆ€ (z : โ„‚), meromorphicOrderAt fโ‚‚ z โ‰  โŠค) :
      characteristic (fโ‚ * fโ‚‚) โŠค r โ‰ค (characteristic fโ‚ โŠค + characteristic fโ‚‚ โŠค) r

      Alias of ValueDistribution.characteristic_mul_top_le.


      For 1 โ‰ค r, the characteristic function for the poles of f * g is less than or equal to the sum of the characteristic functions for the poles of f and g, respectively.

      theorem ValueDistribution.characteristic_mul_top_eventuallyLE {fโ‚ fโ‚‚ : โ„‚ โ†’ โ„‚} (hโ‚fโ‚ : Meromorphic fโ‚) (hโ‚‚fโ‚ : โˆ€ (z : โ„‚), meromorphicOrderAt fโ‚ z โ‰  โŠค) (hโ‚fโ‚‚ : Meromorphic fโ‚‚) (hโ‚‚fโ‚‚ : โˆ€ (z : โ„‚), meromorphicOrderAt fโ‚‚ z โ‰  โŠค) :

      Asymptotically, the characteristic function for the poles of f * g is less than or equal to the sum of the characteristic functions for the poles of f and g, respectively.

      @[deprecated ValueDistribution.characteristic_mul_top_eventuallyLE (since := "2025-12-11")]
      theorem ValueDistribution.characteristic_top_mul_eventually_le {fโ‚ fโ‚‚ : โ„‚ โ†’ โ„‚} (hโ‚fโ‚ : Meromorphic fโ‚) (hโ‚‚fโ‚ : โˆ€ (z : โ„‚), meromorphicOrderAt fโ‚ z โ‰  โŠค) (hโ‚fโ‚‚ : Meromorphic fโ‚‚) (hโ‚‚fโ‚‚ : โˆ€ (z : โ„‚), meromorphicOrderAt fโ‚‚ z โ‰  โŠค) :

      Alias of ValueDistribution.characteristic_mul_top_eventuallyLE.


      Asymptotically, the characteristic function for the poles of f * g is less than or equal to the sum of the characteristic functions for the poles of f and g, respectively.

      @[simp]

      For natural numbers n, the characteristic function for the zeros of f ^ n equals n times the characteristic counting function for the zeros of f.

      @[simp]

      For natural numbers n, the characteristic function for the poles of f ^ n equals n times the characteristic function for the poles of f.