Documentation

Mathlib.Analysis.Distribution.SchwartzSpace.Basic

Schwartz space #

This file defines the Schwartz space. Usually, the Schwartz space is defined as the set of smooth functions $f : ℝ^n β†’ β„‚$ such that there exists $C_{Ξ±Ξ²} > 0$ with $$|x^Ξ± βˆ‚^Ξ² f(x)| < C_{Ξ±Ξ²}$$ for all $x ∈ ℝ^n$ and for all multiindices $Ξ±, Ξ²$. In mathlib, we use a slightly different approach and define the Schwartz space as all smooth functions f : E β†’ F, where E and F are real normed vector spaces such that for all natural numbers k and n we have uniform bounds β€–xβ€– ^ k * β€–iteratedFDeriv ℝ n f xβ€– < C. This approach completely avoids using partial derivatives as well as polynomials. We construct the topology on the Schwartz space by a family of seminorms, which are the best constants in the above estimates. The abstract theory of topological vector spaces developed in SeminormFamily.moduleFilterBasis and WithSeminorms.toLocallyConvexSpace turns the Schwartz space into a locally convex topological vector space.

Main definitions #

Main statements #

Implementation details #

The implementation of the seminorms is taken almost literally from ContinuousLinearMap.opNorm.

Notation #

Tags #

Schwartz space, tempered distributions

structure SchwartzMap (E : Type u_5) (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] :
Type (max u_5 u_6)

A function is a Schwartz function if it is smooth and all derivatives decay faster than any power of β€–xβ€–.

Instances For

    A function is a Schwartz function if it is smooth and all derivatives decay faster than any power of β€–xβ€–.

    Equations
      Instances For
        theorem SchwartzMap.decay {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] (f : SchwartzMap E F) (k n : β„•) :
        βˆƒ (C : ℝ), 0 < C ∧ βˆ€ (x : E), β€–xβ€– ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– ≀ C

        All derivatives of a Schwartz function are rapidly decaying.

        theorem SchwartzMap.smooth {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] (f : SchwartzMap E F) (n : β„•βˆž) :
        ContDiff ℝ ↑n ⇑f

        Every Schwartz function is smooth.

        theorem SchwartzMap.contDiffAt {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] (f : SchwartzMap E F) (n : β„•βˆž) {x : E} :
        ContDiffAt ℝ (↑n) (⇑f) x

        Every Schwartz function is smooth at any point.

        Every Schwartz function is continuous.

        Every Schwartz function is differentiable.

        Every Schwartz function is differentiable at any point.

        theorem SchwartzMap.ext {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f g : SchwartzMap E F} (h : βˆ€ (x : E), f x = g x) :
        f = g
        theorem SchwartzMap.ext_iff {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f g : SchwartzMap E F} :
        f = g ↔ βˆ€ (x : E), f x = g x

        Auxiliary lemma, used in proving the more general result isBigO_cocompact_rpow.

        Algebraic properties #

        instance SchwartzMap.instSMul {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :
        SMul π•œ (SchwartzMap E F)
        Equations
          @[simp]
          theorem SchwartzMap.smul_apply {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {f : SchwartzMap E F} {c : π•œ} {x : E} :
          (c β€’ f) x = c β€’ f x
          instance SchwartzMap.instIsScalarTower {π•œ : Type u_2} {π•œ' : Type u_3} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] [NormedField π•œ'] [NormedSpace π•œ' F] [SMulCommClass ℝ π•œ' F] [SMul π•œ π•œ'] [IsScalarTower π•œ π•œ' F] :
          IsScalarTower π•œ π•œ' (SchwartzMap E F)
          instance SchwartzMap.instSMulCommClass {π•œ : Type u_2} {π•œ' : Type u_3} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] [NormedField π•œ'] [NormedSpace π•œ' F] [SMulCommClass ℝ π•œ' F] [SMulCommClass π•œ π•œ' F] :
          SMulCommClass π•œ π•œ' (SchwartzMap E F)
          @[simp]
          theorem SchwartzMap.neg_apply {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] (f : SchwartzMap E F) (x : E) :
          (-f) x = -f x
          @[simp]
          theorem SchwartzMap.add_apply {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f g : SchwartzMap E F} {x : E} :
          (f + g) x = f x + g x
          @[simp]
          theorem SchwartzMap.sub_apply {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f g : SchwartzMap E F} {x : E} :
          (f - g) x = f x - g x
          @[simp]
          theorem SchwartzMap.sum_apply {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {ΞΉ : Type u_10} (s : Finset ΞΉ) (f : ΞΉ β†’ SchwartzMap E F) (x : E) :
          (βˆ‘ i ∈ s, f i) x = βˆ‘ i ∈ s, (f i) x

          Coercion as an additive homomorphism.

          Equations
            Instances For
              instance SchwartzMap.instModule {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :
              Module π•œ (SchwartzMap E F)
              Equations

                Seminorms on Schwartz space #

                def SchwartzMap.seminorm (π•œ : Type u_2) {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k n : β„•) :
                Seminorm π•œ (SchwartzMap E F)

                The seminorms of the Schwartz space given by the best constants in the definition of 𝓒(E, F).

                Equations
                  Instances For
                    theorem SchwartzMap.seminorm_apply (π•œ : Type u_2) {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {k n : β„•} (f : SchwartzMap E F) :
                    (SchwartzMap.seminorm π•œ k n) f = sInf {c : ℝ | 0 ≀ c ∧ βˆ€ (x : E), β€–xβ€– ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– ≀ c}

                    The seminorm is given by infimum over all c such that the estimate β€–xβ€– ^ k * β€–iteratedFDeriv ℝ n f xβ€– ≀ c holds.

                    Note that it is usually better to use seminorm_le_bound or le_seminorm instead of this lemma.

                    theorem SchwartzMap.seminorm_le_bound (π•œ : Type u_2) {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k n : β„•) (f : SchwartzMap E F) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ (x : E), β€–xβ€– ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– ≀ M) :
                    (SchwartzMap.seminorm π•œ k n) f ≀ M

                    If one controls the seminorm for every x, then one controls the seminorm.

                    theorem SchwartzMap.seminorm_le_bound' (π•œ : Type u_2) {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k n : β„•) (f : SchwartzMap ℝ F) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ (x : ℝ), |x| ^ k * β€–iteratedDeriv n (⇑f) xβ€– ≀ M) :
                    (SchwartzMap.seminorm π•œ k n) f ≀ M

                    If one controls the seminorm for every x, then one controls the seminorm.

                    Variant for functions 𝓒(ℝ, F).

                    theorem SchwartzMap.le_seminorm (π•œ : Type u_2) {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k n : β„•) (f : SchwartzMap E F) (x : E) :

                    The seminorm controls the Schwartz estimate for any fixed x.

                    theorem SchwartzMap.le_seminorm' (π•œ : Type u_2) {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k n : β„•) (f : SchwartzMap ℝ F) (x : ℝ) :
                    |x| ^ k * β€–iteratedDeriv n (⇑f) xβ€– ≀ (SchwartzMap.seminorm π•œ k n) f

                    The seminorm controls the Schwartz estimate for any fixed x.

                    Variant for functions 𝓒(ℝ, F).

                    theorem SchwartzMap.norm_iteratedFDeriv_le_seminorm (π•œ : Type u_2) {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (n : β„•) (xβ‚€ : E) :
                    β€–iteratedFDeriv ℝ n (⇑f) xβ‚€β€– ≀ (SchwartzMap.seminorm π•œ 0 n) f
                    theorem SchwartzMap.norm_pow_mul_le_seminorm (π•œ : Type u_2) {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (k : β„•) (xβ‚€ : E) :
                    β€–xβ‚€β€– ^ k * β€–f xβ‚€β€– ≀ (SchwartzMap.seminorm π•œ k 0) f
                    theorem SchwartzMap.norm_le_seminorm (π•œ : Type u_2) {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (xβ‚€ : E) :
                    β€–f xβ‚€β€– ≀ (SchwartzMap.seminorm π•œ 0 0) f
                    def schwartzSeminormFamily (π•œ : Type u_2) (E : Type u_5) (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :

                    The family of Schwartz seminorms.

                    Equations
                      Instances For
                        @[simp]
                        theorem SchwartzMap.schwartzSeminormFamily_apply (π•œ : Type u_2) (E : Type u_5) (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (n k : β„•) :
                        schwartzSeminormFamily π•œ E F (n, k) = SchwartzMap.seminorm π•œ n k
                        theorem SchwartzMap.one_add_le_sup_seminorm_apply {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {m : β„• Γ— β„•} {k n : β„•} (hk : k ≀ m.1) (hn : n ≀ m.2) (f : SchwartzMap E F) (x : E) :
                        (1 + β€–xβ€–) ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– ≀ 2 ^ m.1 * ((Finset.Iic m).sup fun (m : β„• Γ— β„•) => SchwartzMap.seminorm π•œ m.1 m.2) f

                        A more convenient version of le_sup_seminorm_apply.

                        The set Finset.Iic m is the set of all pairs (k', n') with k' ≀ m.1 and n' ≀ m.2. Note that the constant is far from optimal.

                        The topology on the Schwartz space #

                        def HasCompactSupport.toSchwartzMap {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f : E β†’ F} (h₁ : HasCompactSupport f) (hβ‚‚ : ContDiff ℝ (β†‘βŠ€) f) :

                        A smooth compactly supported function is a Schwartz function.

                        Equations
                          Instances For
                            @[simp]
                            theorem HasCompactSupport.toSchwartzMap_toFun {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f : E β†’ F} (h₁ : HasCompactSupport f) (hβ‚‚ : ContDiff ℝ (β†‘βŠ€) f) (a✝ : E) :
                            (h₁.toSchwartzMap hβ‚‚) a✝ = f a✝

                            Construction of continuous linear maps between Schwartz spaces #

                            def SchwartzMap.mkLM {π•œ : Type u_2} {π•œ' : Type u_3} {D : Type u_4} {E : Type u_5} {F : Type u_6} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedField π•œ'] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ E] [SMulCommClass ℝ π•œ E] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ' G] [SMulCommClass ℝ π•œ' G] {Οƒ : π•œ β†’+* π•œ'} (A : SchwartzMap D E β†’ F β†’ G) (hadd : βˆ€ (f g : SchwartzMap D E) (x : F), A (f + g) x = A f x + A g x) (hsmul : βˆ€ (a : π•œ) (f : SchwartzMap D E) (x : F), A (a β€’ f) x = Οƒ a β€’ A f x) (hsmooth : βˆ€ (f : SchwartzMap D E), ContDiff ℝ (β†‘βŠ€) (A f)) (hbound : βˆ€ (n : β„• Γ— β„•), βˆƒ (s : Finset (β„• Γ— β„•)) (C : ℝ), 0 ≀ C ∧ βˆ€ (f : SchwartzMap D E) (x : F), β€–xβ€– ^ n.1 * β€–iteratedFDeriv ℝ n.2 (A f) xβ€– ≀ C * (s.sup (schwartzSeminormFamily π•œ D E)) f) :

                            Create a semilinear map between Schwartz spaces.

                            Note: This is a helper definition for mkCLM.

                            Equations
                              Instances For
                                def SchwartzMap.mkCLM {π•œ : Type u_2} {π•œ' : Type u_3} {D : Type u_4} {E : Type u_5} {F : Type u_6} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedField π•œ'] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ E] [SMulCommClass ℝ π•œ E] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ' G] [SMulCommClass ℝ π•œ' G] {Οƒ : π•œ β†’+* π•œ'} [RingHomIsometric Οƒ] (A : SchwartzMap D E β†’ F β†’ G) (hadd : βˆ€ (f g : SchwartzMap D E) (x : F), A (f + g) x = A f x + A g x) (hsmul : βˆ€ (a : π•œ) (f : SchwartzMap D E) (x : F), A (a β€’ f) x = Οƒ a β€’ A f x) (hsmooth : βˆ€ (f : SchwartzMap D E), ContDiff ℝ (β†‘βŠ€) (A f)) (hbound : βˆ€ (n : β„• Γ— β„•), βˆƒ (s : Finset (β„• Γ— β„•)) (C : ℝ), 0 ≀ C ∧ βˆ€ (f : SchwartzMap D E) (x : F), β€–xβ€– ^ n.1 * β€–iteratedFDeriv ℝ n.2 (A f) xβ€– ≀ C * (s.sup (schwartzSeminormFamily π•œ D E)) f) :

                                Create a continuous semilinear map between Schwartz spaces.

                                For an example of using this definition, see fderivCLM.

                                Equations
                                  Instances For
                                    def SchwartzMap.mkCLMtoNormedSpace {π•œ : Type u_2} {π•œ' : Type u_3} {D : Type u_4} {E : Type u_5} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedField π•œ] [NormedField π•œ'] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ E] [SMulCommClass ℝ π•œ E] [NormedAddCommGroup G] [NormedSpace π•œ' G] {Οƒ : π•œ β†’+* π•œ'} [RingHomIsometric Οƒ] (A : SchwartzMap D E β†’ G) (hadd : βˆ€ (f g : SchwartzMap D E), A (f + g) = A f + A g) (hsmul : βˆ€ (a : π•œ) (f : SchwartzMap D E), A (a β€’ f) = Οƒ a β€’ A f) (hbound : βˆƒ (s : Finset (β„• Γ— β„•)) (C : ℝ), 0 ≀ C ∧ βˆ€ (f : SchwartzMap D E), β€–A fβ€– ≀ C * (s.sup (schwartzSeminormFamily π•œ D E)) f) :

                                    Define a continuous semilinear map from Schwartz space to a normed space.

                                    Equations
                                      Instances For
                                        def SchwartzMap.evalCLM (π•œ : Type u_2) (E : Type u_5) {F : Type u_6} (G : Type u_7) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ G] [SMulCommClass ℝ π•œ G] (m : F) :

                                        The map applying a vector to Hom-valued Schwartz function as a continuous linear map.

                                        Equations
                                          Instances For
                                            @[simp]
                                            theorem SchwartzMap.evalCLM_apply_apply {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ G] [SMulCommClass ℝ π•œ G] (f : SchwartzMap E (F β†’L[ℝ] G)) (m : F) (x : E) :
                                            ((SchwartzMap.evalCLM π•œ E G m) f) x = (f x) m
                                            def SchwartzMap.bilinLeftCLM {π•œ : Type u_2} {D : Type u_4} {E : Type u_5} {F : Type u_6} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ F] [NormedSpace π•œ E] [NormedSpace π•œ G] (B : E β†’L[π•œ] F β†’L[π•œ] G) {g : D β†’ F} (hg : Function.HasTemperateGrowth g) :

                                            The map f ↦ (x ↦ B (f x) (g x)) as a continuous π•œ-linear map on Schwartz space, where B is a continuous π•œ-linear map and g is a function of temperate growth.

                                            Equations
                                              Instances For
                                                @[simp]
                                                theorem SchwartzMap.bilinLeftCLM_apply {π•œ : Type u_2} {D : Type u_4} {E : Type u_5} {F : Type u_6} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ F] [NormedSpace π•œ E] [NormedSpace π•œ G] (B : E β†’L[π•œ] F β†’L[π•œ] G) {g : D β†’ F} (hg : Function.HasTemperateGrowth g) (f : SchwartzMap D E) :
                                                ⇑((bilinLeftCLM B hg) f) = fun (x : D) => (B (f x)) (g x)
                                                def SchwartzMap.smulLeftCLM {π•œ : Type u_2} {E : Type u_5} (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] (g : E β†’ π•œ) :

                                                The map f ↦ (x ↦ g x β€’ f x) as a continuous π•œ-linear map on Schwartz space, where g is a function of temperate growth.

                                                Equations
                                                  Instances For
                                                    theorem SchwartzMap.smulLeftCLM_apply {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] {g : E β†’ π•œ} (hg : Function.HasTemperateGrowth g) (f : SchwartzMap E F) :
                                                    ⇑((smulLeftCLM F g) f) = fun (x : E) => g x β€’ f x
                                                    @[simp]
                                                    theorem SchwartzMap.smulLeftCLM_apply_apply {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] {g : E β†’ π•œ} (hg : Function.HasTemperateGrowth g) (f : SchwartzMap E F) (x : E) :
                                                    ((smulLeftCLM F g) f) x = g x β€’ f x
                                                    @[simp]
                                                    theorem SchwartzMap.smulLeftCLM_const {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] (c : π•œ) :
                                                    (smulLeftCLM F fun (x : E) => c) = c β€’ ContinuousLinearMap.id π•œ (SchwartzMap E F)
                                                    @[simp]
                                                    theorem SchwartzMap.smulLeftCLM_smulLeftCLM_apply {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] {g₁ gβ‚‚ : E β†’ π•œ} (hg₁ : Function.HasTemperateGrowth g₁) (hgβ‚‚ : Function.HasTemperateGrowth gβ‚‚) (f : SchwartzMap E F) :
                                                    (smulLeftCLM F g₁) ((smulLeftCLM F gβ‚‚) f) = (smulLeftCLM F (g₁ * gβ‚‚)) f
                                                    theorem SchwartzMap.smulLeftCLM_compL_smulLeftCLM {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] {g₁ gβ‚‚ : E β†’ π•œ} (hg₁ : Function.HasTemperateGrowth g₁) (hgβ‚‚ : Function.HasTemperateGrowth gβ‚‚) :
                                                    (smulLeftCLM F g₁).comp (smulLeftCLM F gβ‚‚) = smulLeftCLM F (g₁ * gβ‚‚)
                                                    theorem SchwartzMap.smulLeftCLM_smul {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] {g : E β†’ π•œ} (hg : Function.HasTemperateGrowth g) (c : π•œ) :
                                                    theorem SchwartzMap.smulLeftCLM_add {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] {g₁ gβ‚‚ : E β†’ π•œ} (hg₁ : Function.HasTemperateGrowth g₁) (hgβ‚‚ : Function.HasTemperateGrowth gβ‚‚) :
                                                    smulLeftCLM F (g₁ + gβ‚‚) = smulLeftCLM F g₁ + smulLeftCLM F gβ‚‚
                                                    theorem SchwartzMap.smulLeftCLM_sub {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] {g₁ gβ‚‚ : E β†’ π•œ} (hg₁ : Function.HasTemperateGrowth g₁) (hgβ‚‚ : Function.HasTemperateGrowth gβ‚‚) :
                                                    smulLeftCLM F (g₁ - gβ‚‚) = smulLeftCLM F g₁ - smulLeftCLM F gβ‚‚
                                                    theorem SchwartzMap.smulLeftCLM_neg {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] {g : E β†’ π•œ} (hg : Function.HasTemperateGrowth g) :
                                                    theorem SchwartzMap.smulLeftCLM_fun_neg {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] {g : E β†’ π•œ} (hg : Function.HasTemperateGrowth g) :
                                                    (smulLeftCLM F fun (x : E) => -g x) = -smulLeftCLM F g
                                                    theorem SchwartzMap.smulLeftCLM_sum {ΞΉ : Type u_1} {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] {g : ΞΉ β†’ E β†’ π•œ} {s : Finset ΞΉ} (hg : βˆ€ i ∈ s, Function.HasTemperateGrowth (g i)) :
                                                    (smulLeftCLM F fun (x : E) => βˆ‘ i ∈ s, g i x) = βˆ‘ i ∈ s, smulLeftCLM F (g i)
                                                    theorem SchwartzMap.smulLeftCLM_ofReal {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] (π•œ' : Type u_10) [RCLike π•œ'] [NormedSpace π•œ' F] {g : E β†’ ℝ} (hg : Function.HasTemperateGrowth g) (f : SchwartzMap E F) :
                                                    (smulLeftCLM F fun (x : E) => ↑(g x)) f = (smulLeftCLM F g) f
                                                    theorem SchwartzMap.smulLeftCLM_real_smul {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {π•œ' : Type u_10} [RCLike π•œ'] [NormedSpace π•œ' F] {g : E β†’ π•œ'} (hg : Function.HasTemperateGrowth g) (c : ℝ) :
                                                    theorem SchwartzMap.tsupport_smulLeftCLM_subset {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] (g : E β†’ π•œ) (f : SchwartzMap E F) :
                                                    def SchwartzMap.pairing {π•œ : Type u_2} {D : Type u_4} {E : Type u_5} {F : Type u_6} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ F] [NormedSpace π•œ E] [NormedSpace π•œ G] (B : E β†’L[π•œ] F β†’L[π•œ] G) :

                                                    The bilinear pairing of Schwartz functions.

                                                    The continuity in the left argument is provided in SchwartzMap.pairing_continuous_left.

                                                    Equations
                                                      Instances For
                                                        theorem SchwartzMap.pairing_apply {π•œ : Type u_2} {D : Type u_4} {E : Type u_5} {F : Type u_6} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ F] [NormedSpace π•œ E] [NormedSpace π•œ G] (B : E β†’L[π•œ] F β†’L[π•œ] G) (f : SchwartzMap D E) (g : SchwartzMap D F) :
                                                        ⇑(((pairing B) f) g) = fun (x : D) => (B (f x)) (g x)
                                                        @[simp]
                                                        theorem SchwartzMap.pairing_apply_apply {π•œ : Type u_2} {D : Type u_4} {E : Type u_5} {F : Type u_6} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ F] [NormedSpace π•œ E] [NormedSpace π•œ G] (B : E β†’L[π•œ] F β†’L[π•œ] G) (f : SchwartzMap D E) (g : SchwartzMap D F) (x : D) :
                                                        (((pairing B) f) g) x = (B (f x)) (g x)
                                                        theorem SchwartzMap.pairing_continuous_left {π•œ : Type u_2} {D : Type u_4} {E : Type u_5} {F : Type u_6} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ F] [NormedSpace π•œ E] [NormedSpace π•œ G] (B : E β†’L[π•œ] F β†’L[π•œ] G) (g : SchwartzMap D F) :
                                                        Continuous fun (x : SchwartzMap D E) => ((pairing B) x) g

                                                        The pairing is continuous in the left argument.

                                                        Note that since 𝓒(E, F) is not a normed space, uncurried and curried continuity do not coincide.

                                                        Scalar multiplication with a continuous linear map as a continuous linear map on Schwartz functions.

                                                        Equations
                                                          Instances For
                                                            @[simp]
                                                            theorem SchwartzMap.smulRightCLM_apply_apply {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ F] (L : E β†’L[ℝ] G β†’L[ℝ] ℝ) (f : SchwartzMap E F) (x : E) :
                                                            ((smulRightCLM π•œ F L) f) x = (L x).smulRight (f x)
                                                            def SchwartzMap.compCLM (π•œ : Type u_2) {D : Type u_4} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {g : D β†’ E} (hg : Function.HasTemperateGrowth g) (hg_upper : βˆƒ (k : β„•) (C : ℝ), βˆ€ (x : D), β€–xβ€– ≀ C * (1 + β€–g xβ€–) ^ k) :

                                                            Composition with a function on the right is a continuous linear map on Schwartz space provided that the function is temperate and growths polynomially near infinity.

                                                            Equations
                                                              Instances For
                                                                @[simp]
                                                                theorem SchwartzMap.compCLM_apply (π•œ : Type u_2) {D : Type u_4} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {g : D β†’ E} (hg : Function.HasTemperateGrowth g) (hg_upper : βˆƒ (k : β„•) (C : ℝ), βˆ€ (x : D), β€–xβ€– ≀ C * (1 + β€–g xβ€–) ^ k) (f : SchwartzMap E F) :
                                                                ⇑((compCLM π•œ hg hg_upper) f) = ⇑f ∘ g
                                                                def SchwartzMap.compCLMOfAntilipschitz (π•œ : Type u_2) {D : Type u_4} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {K : NNReal} {g : D β†’ E} (hg : Function.HasTemperateGrowth g) (h'g : AntilipschitzWith K g) :

                                                                Composition with a function on the right is a continuous linear map on Schwartz space provided that the function is temperate and antilipschitz.

                                                                Equations
                                                                  Instances For
                                                                    @[simp]
                                                                    theorem SchwartzMap.compCLMOfAntilipschitz_apply (π•œ : Type u_2) {D : Type u_4} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {K : NNReal} {g : D β†’ E} (hg : Function.HasTemperateGrowth g) (h'g : AntilipschitzWith K g) (f : SchwartzMap E F) :
                                                                    ⇑((compCLMOfAntilipschitz π•œ hg h'g) f) = ⇑f ∘ g

                                                                    Composition with a continuous linear equiv on the right is a continuous linear map on Schwartz space.

                                                                    Equations
                                                                      Instances For
                                                                        @[simp]
                                                                        theorem SchwartzMap.compCLMOfContinuousLinearEquiv_apply (π•œ : Type u_2) {D : Type u_4} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (g : D ≃L[ℝ] E) (f : SchwartzMap E F) :
                                                                        ⇑((compCLMOfContinuousLinearEquiv π•œ g) f) = ⇑f ∘ ⇑g
                                                                        theorem SchwartzMap.smulLeftCLM_compCLMOfContinuousLinearEquiv (π•œ : Type u_2) {π•œ' : Type u_3} {D : Type u_4} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] [NontriviallyNormedField π•œ'] [NormedAlgebra ℝ π•œ'] [NormedSpace π•œ' F] {u : D β†’ π•œ'} (hu : Function.HasTemperateGrowth u) (g : D ≃L[ℝ] E) (f : SchwartzMap E F) :
                                                                        (smulLeftCLM F u) ((compCLMOfContinuousLinearEquiv π•œ g) f) = (compCLMOfContinuousLinearEquiv π•œ g) ((smulLeftCLM F (u ∘ ⇑g.symm)) f)

                                                                        Integration #

                                                                        theorem SchwartzMap.integral_pow_mul_iteratedFDeriv_le (π•œ : Type u_2) {D : Type u_4} {V : Type u_9} [RCLike π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedAddCommGroup V] [NormedSpace ℝ V] [NormedSpace π•œ V] [MeasurableSpace D] (ΞΌ : MeasureTheory.Measure D) [hΞΌ : ΞΌ.HasTemperateGrowth] (f : SchwartzMap D V) (k n : β„•) :
                                                                        ∫ (x : D), β€–xβ€– ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– βˆ‚ΞΌ ≀ (2 ^ ΞΌ.integrablePower * ∫ (x : D), (1 + β€–xβ€–) ^ (-↑μ.integrablePower) βˆ‚ΞΌ) * ((SchwartzMap.seminorm π•œ 0 n) f + (SchwartzMap.seminorm π•œ (k + ΞΌ.integrablePower) n) f)

                                                                        The integral as a continuous linear map from Schwartz space to the codomain.

                                                                        Equations
                                                                          Instances For
                                                                            @[simp]
                                                                            theorem SchwartzMap.integralCLM_apply (π•œ : Type u_2) {D : Type u_4} {V : Type u_9} [RCLike π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedAddCommGroup V] [NormedSpace ℝ V] [NormedSpace π•œ V] [MeasurableSpace D] {ΞΌ : MeasureTheory.Measure D} [hΞΌ : ΞΌ.HasTemperateGrowth] [BorelSpace D] [SecondCountableTopology D] (f : SchwartzMap D V) :
                                                                            (integralCLM π•œ ΞΌ) f = ∫ (x : D), f x βˆ‚ΞΌ

                                                                            Inclusion into the space of bounded continuous functions #

                                                                            Schwartz functions as bounded continuous functions

                                                                            Equations
                                                                              Instances For

                                                                                Schwartz functions as continuous functions

                                                                                Equations
                                                                                  Instances For

                                                                                    The inclusion map from Schwartz functions to bounded continuous functions as a continuous linear map.

                                                                                    Equations
                                                                                      Instances For
                                                                                        @[simp]
                                                                                        theorem SchwartzMap.toBoundedContinuousFunctionCLM_apply (π•œ : Type u_2) (E : Type u_5) (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (x : E) :
                                                                                        ((toBoundedContinuousFunctionCLM π•œ E F) f) x = f x

                                                                                        Schwartz functions as continuous functions vanishing at infinity.

                                                                                        Equations
                                                                                          Instances For

                                                                                            The inclusion map from Schwartz functions to continuous functions vanishing at infinity as a continuous linear map.

                                                                                            Equations
                                                                                              Instances For
                                                                                                @[simp]
                                                                                                theorem SchwartzMap.toZeroAtInftyCLM_apply (π•œ : Type u_2) (E : Type u_5) (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [ProperSpace E] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (x : E) :
                                                                                                ((toZeroAtInftyCLM π•œ E F) f) x = f x

                                                                                                Inclusion into L^p space #

                                                                                                theorem SchwartzMap.eLpNorm_le_seminorm (π•œ : Type u_2) {E : Type u_5} (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [MeasurableSpace E] [OpensMeasurableSpace E] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (p : ENNReal) (ΞΌ : MeasureTheory.Measure E := by volume_tac) [hΞΌ : ΞΌ.HasTemperateGrowth] :
                                                                                                βˆƒ (k : β„•) (C : NNReal), βˆ€ (f : SchwartzMap E F), MeasureTheory.eLpNorm (⇑f) p ΞΌ ≀ ↑C * ENNReal.ofReal (((Finset.Iic (k, 0)).sup (schwartzSeminormFamily π•œ E F)) f)

                                                                                                The L^p norm of a Schwartz function is controlled by a finite family of Schwartz seminorms.

                                                                                                The maximum index k and the constant C depend on p and ΞΌ.

                                                                                                The L^p norm of a Schwartz function is finite.

                                                                                                Schwartz functions are in L^∞; does not require hμ.HasTemperateGrowth.

                                                                                                Schwartz functions are in L^p for any p.

                                                                                                Map a Schwartz function to an Lp function for any p.

                                                                                                Equations
                                                                                                  Instances For
                                                                                                    theorem SchwartzMap.coeFn_toLp {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [MeasurableSpace E] [OpensMeasurableSpace E] [SecondCountableTopologyEither E F] (f : SchwartzMap E F) (p : ENNReal) (ΞΌ : MeasureTheory.Measure E := by volume_tac) [hΞΌ : ΞΌ.HasTemperateGrowth] :
                                                                                                    ↑↑(f.toLp p ΞΌ) =ᡐ[ΞΌ] ⇑f
                                                                                                    theorem SchwartzMap.norm_toLp_le_seminorm (π•œ : Type u_2) {E : Type u_5} (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [MeasurableSpace E] [OpensMeasurableSpace E] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] [SecondCountableTopologyEither E F] (p : ENNReal) (ΞΌ : MeasureTheory.Measure E := by volume_tac) [hΞΌ : ΞΌ.HasTemperateGrowth] :
                                                                                                    βˆƒ (k : β„•) (C : ℝ), 0 ≀ C ∧ βˆ€ (f : SchwartzMap E F), β€–f.toLp p ΞΌβ€– ≀ C * ((Finset.Iic (k, 0)).sup (schwartzSeminormFamily π•œ E F)) f
                                                                                                    def SchwartzMap.toLpCLM (π•œ : Type u_2) {E : Type u_5} (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [MeasurableSpace E] [OpensMeasurableSpace E] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] [SecondCountableTopologyEither E F] (p : ENNReal) [Fact (1 ≀ p)] (ΞΌ : MeasureTheory.Measure E := by volume_tac) [hΞΌ : ΞΌ.HasTemperateGrowth] :
                                                                                                    SchwartzMap E F β†’L[π•œ] β†₯(MeasureTheory.Lp F p ΞΌ)

                                                                                                    Continuous linear map from Schwartz functions to L^p.

                                                                                                    Equations
                                                                                                      Instances For
                                                                                                        @[simp]
                                                                                                        theorem SchwartzMap.toLpCLM_apply {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [MeasurableSpace E] [OpensMeasurableSpace E] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] [SecondCountableTopologyEither E F] {p : ENNReal} [Fact (1 ≀ p)] {ΞΌ : MeasureTheory.Measure E} [hΞΌ : ΞΌ.HasTemperateGrowth] {f : SchwartzMap E F} :
                                                                                                        (toLpCLM π•œ F p ΞΌ) f = f.toLp p ΞΌ