Documentation

Mathlib.Analysis.Distribution.SchwartzSpace.Fourier

Fourier transform on Schwartz functions #

This file constructs the Fourier transform as a continuous linear map acting on Schwartz functions, in fourierTransformCLM. It is also given as a continuous linear equiv, in fourierTransformCLE.

Main statements #

The Fourier transform on a real inner product space, as a continuous linear map on the Schwartz space.

This definition is only to define the Fourier transform, use FourierTransform.fourierCLM instead.

Equations
    Instances For
      @[deprecated FourierPair.fourierInv_fourier_eq (since := "2025-11-13")]
      theorem SchwartzMap.fourier_inversion {E : Type u_5} {F : Type u_6} {inst✝ : FourierTransform E F} {inst✝¹ : FourierTransformInv F E} [self : FourierPair E F] (f : E) :

      Alias of FourierPair.fourierInv_fourier_eq.

      @[deprecated FourierInvPair.fourier_fourierInv_eq (since := "2025-11-13")]
      theorem SchwartzMap.fourier_inversion_inv {E : Type u_5} {F : Type u_6} {inst✝ : FourierTransform F E} {inst✝¹ : FourierTransformInv E F} [self : FourierInvPair E F] (f : E) :

      Alias of FourierInvPair.fourier_fourierInv_eq.

      @[deprecated FourierTransform.fourierCLE (since := "2026-01-06")]

      Alias of FourierTransform.fourierCLE.

      Equations
        Instances For
          @[deprecated FourierTransform.fourierCLE_apply (since := "2026-01-06")]

          Alias of FourierTransform.fourierCLE_apply.

          @[deprecated FourierTransform.fourierCLE_symm_apply (since := "2026-01-06")]

          Alias of FourierTransform.fourierCLE_symm_apply.

          The derivative of the Fourier transform is given by the Fourier transform of the multiplication with -(2 * π * Complex.I) • innerSL.

          The Fourier transform of the derivative is given by multiplication of (2 * π * Complex.I) • innerSL with the Fourier transform.

          The Fourier transform satisfies ∫ 𝓕 f * g = ∫ f * 𝓕 g, i.e., it is self-adjoint.

          Version where the multiplication is replaced by a general bilinear form M.

          @[deprecated SchwartzMap.integral_bilin_fourier_eq (since := "2025-11-16")]

          Alias of SchwartzMap.integral_bilin_fourier_eq.


          The Fourier transform satisfies ∫ 𝓕 f * g = ∫ f * 𝓕 g, i.e., it is self-adjoint.

          Version where the multiplication is replaced by a general bilinear form M.

          The Fourier transform satisfies ∫ 𝓕 f • g = ∫ f • 𝓕 g, i.e., it is self-adjoint.

          The Fourier transform satisfies ∫ 𝓕 f * g = ∫ f * 𝓕 g, i.e., it is self-adjoint.

          The inverse Fourier transform satisfies ∫ 𝓕⁻ f * g = ∫ f * 𝓕⁻ g, i.e., it is self-adjoint.

          Version where the multiplication is replaced by a general bilinear form M.

          The inverse Fourier transform satisfies ∫ 𝓕⁻ f • g = ∫ f • 𝓕⁻ g, i.e., it is self-adjoint.

          The inverse Fourier transform satisfies ∫ 𝓕⁻ f * g = ∫ f * 𝓕⁻ g, i.e., it is self-adjoint.

          @[deprecated SchwartzMap.integral_sesq_fourier_eq (since := "2025-11-16")]

          Alias of SchwartzMap.integral_sesq_fourier_eq.

          Plancherel's theorem for Schwartz functions.

          Version where the inner product is replaced by a general sesquilinear form M.

          @[simp]

          Plancherel's theorem for Schwartz functions.